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Preface
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while the experimental data were collected during experiments that we performed
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Introduction

1.1 Introduction

In the last four decades there have been an active development of analytical tools
in statistics, based on the power of computer technology and computation. Today, the
integration of classical theory and computational tools is an important component of
current teaching curricula. It is very effective to teach statistics using programming
languages that allows for direct application of concept to read world data, from the
beginning of the learning process. There are a variety of good commercial programs
for applications in statistics, including MatLab and others. However, the open source
R programming language is the most popular one.

The goal of these notes is to help the student learn the most important tools in
R that will allow for statistics and data analysis. The notes are divided in two main
parts.

The first part of the notes will introduce the use of R and RStudio (Chapter
2) and fundamental concepts of data management programming that are necessary
to understand the program and utilize it (Chapters 3-6). Concepts of data types and
operators are provided, along with conditional statements and loops. In particular data
requires importing data. Importing data may be more complicated than expected since
the data may present missing data, time series may be organized with specific data
formatting that should be properly read and so forth. After successfully importing
the data, the second step is visualization. A good visualization will show the data in
ways that the student may not expect or raise new questions about the data. These
notes will explain the different visualization procedures, the type of graphs and other
visualization options.

The second part is concerned with statistical analysis. This part presents an in-
troduction to the most common one taught as preliminary classes in college statistics.
Chapter 7 introduces basic notions of probability, including basic information on set
theory, definition of probability, the law of large numbers and conditional probability.
The chapter also introduces the Bayes theoream with examples of Bayesian statistics.

Chapter 8 describes the concept of continuous and discrete random variables and
distributions. This chapter describes the bimodal, normal, t-student, geometric, chi-
square, logistic and Poisson distributions.

Chapter 9 enters into statistical methods with principles of descriptive statistics.
The chapter begins with descriptive statistics such as the construction of classes, cu-
mulative curves and data visualization tools. Then it describes measures of central
tendency and variability with examples in R on real data. Concepts of quantiles and
box plots are provided.
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Chapter 10 introduces inferential statistics with concepts of populations, samples
and inferential methods. Chapter 11 introduces the concept of linear models, linear
regression and correlation. Chapter 12 discusses the most common experimental de-
signs, which are cornerstone for a good experiment and therefore a solid statistical
analysis.

Chapter 13 describes the analysis of variance (ANOVA) with some simple applica-
tions and further examples on more complex data analysis.

Chapter 14 describes multivariate statistics including covariance matrices, corre-
lation matrices, distances, principal component analysis, cluster analysis and other
common techniques, while Chapters 14 non�linear optimization regression procedures
and least squares concepts applied to non linear models.
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RStudio

In this notes the integrated development environment (IDE) RStudio is used for pro-
gramming. RStudio allows for using an intuitive and powerful graphical interface to
write programs in the language R. It is available in two formats: RStudio Desktop
which is a freeware desktop application and RStudio Server runs on a remote server
and allows accessing RStudio using a web browser.

RStudio allows for installation of a large number of R packages used in these notes.
There are many packages for statistical analysis for basic statistics to multivariate
statistics. It has image analysis, geostatistics, GIS and many other packages.

Fig. 2.1



3

Data types and operators

In statistical analysis we usually classify data into qualitative and quantitative data.
Data are observations of a variable we are dealing with. Qualitative data are the ones
that can be described through specific attributes, for instance the sex of a person
(female or male). For a qualitative variable numerical measurement is not possible.
Gender is qualitative variable, presence or absence of a pathogen in a sample. When
a variable is qualitative and it allows for two possibility is called a dichotomous or
binary variable.

Quantitative variables are the ones that can be represented by a number such as the
air temperature (10, 15 Celsius). Quantitative data are classified in discrete variables
such as daily average temperature, or the number of units in a population. Continuous
variables present all values of a given range are possible. We may be limited to measure
all the possible values by the accuracy and precision of the measurement device.

Ordinal variables are variables with a score, with a scale. A leaf damage from a
pathogen can be classified with 1,2,3 and 4. Where 1 is a leaf with no damage, 2
presents little areas of chlorotic presence and so forth to level 4 where all the leave is
covered by the pathogen damage or lesions.

It is important to identify which type of variables we are dealing with, since it will
affect the type of statistics we will apply.

To analyze data, being qualitative, ordinal or quantitative with the use of computer,
it is important to understand the concept of a variable from a computer stand point. A
variable is reserved memory in the computer to store values. Therefore when we create
a variable we are simply reserving a space in the computer memory. The variable can
have different format, it can be a text such as the word cat, or it can be a value of
temperature such as 24. Depending on the type of variable, computer uses different
ways of storing that memory space. In this chapter, data types and operators are
described.

Another important concept is difference between an input variables also called
predictor or independent variable and the output variables also called response or
dependent variables. Ideally, a cause�effect system is identified, with a deterministic
structure, however often we can only find associations. There are five data types in R:

a Vector

a Matrix

a Array

a List

a Data Frame
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Let’s now discuss these five tipes.

3.1 Vector

A vector is a sequence of data elements of the same type. There five classes of vectors

a Logical (True or False)

a Integer (1, 3, 2500)

a Numeric (1.34, -3200.12, 3.1415)

a Complex (4 + 3i, 1+2i)

a Character (”Hello”)

When we talk about vectors we can have a single value or a sequence of values.
The following statement is such that we type x � 15, we then enter and R re-

turns the value of the variable x that it is now equal to 15. The number [1] into the
squared parenthesis means that even a scalar is defined as a vector of length equal to
1. Therefore the value 15 is the first element of the vector x.

> x=15

> x

[1] 15

>

A vector can be created, containing 4 elements. It is important here to specify that
we do not refer as a vector as we do in linear algebra or physics, but in this contest
a vector is simply a series of consecutive values. If the vector y is created, by typing
y $ �c�2, 4, 6, 8�, and then typing y at the prompt, R returns the input values.

> y <- c(2, 4, 6, 8)

> y

[1] 2 4 6 8

>

The instruction c before the parenthesis is used to concatenate the values. Note
that in R an arrow is used $ �, it means that the value are assigned to the variable y.

Let’s now create a Logical vector. After opening R studio, a new script is created
by opening a new file and naming it Datatypes.R. The following statements are then
written:

#Vectors

#Logical

Vtr1=c(TRUE,FALSE)

When this script is executed (for instance by selecting only the line with the vector
definition and hitting run), a new variable is created. This is visible in the windows
on the upper part of the screen, called Environment.

The third vector type is Integer. It means that the variable is a number without
decimal places.
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The third type is Numeric. It means that the variable is a number that can present
decimal places.

The fourth type of vector is Complex. It means that the variable is a complex
number with a real and an imaginary part. Finally the fifth type is Character, that is a
variable written as text, where we can store a single character or a sequence of words
as well.

Now we can use R and create these vectors as example.

#Vectors

#Logical

vtr1 =c(TRUE, FALSE)

class(vtr1)

#Integer

vtr2= c(6L,34L,9999L)

class(vtr2)

#Numeric

vtr3= c(6,43.23,55555)

class(vtr3)

Now if we execute this statement, we will see that a new variable has been created,
that is a logical data type and it stores two values, TRUE and FALSE. If we want to
know to which class the variable belongs we can type the instruction class as shown
above. Executing the program will return the class type. If we type the name of the
variable in the R console, for instance vtr2, the program will return the values of the
vector. When I write an L after the number, it is treated as an integer.

The data type of a variable can be changed with the instruction below, where the
variable Year belonging to the data.frame NevadaPrec is converted from int to num:

NevadaPrec$Year <- as.numeric(NevadaPrec$Year)

To print a number in scientific notation, the following instruction is used.

formatC(1/3.630781e-09, format = "e", digits = 2)

3.1.1 Operators

Operators are construct that can manipulate the value of the operands. There are four
types of operators:

a Arithmetic

a Relational

a Assignment

a Logical
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3.1.2 Arithmetic

There are many types of arithmetic, such as

a Addition � a+b

a Subtraction � a-b

a Multiplication � a*b

a Division � a/b

a Modulus � a%%b

a Exponent � a b̂

a Floor Division � a% / %b

A simple example is:

>print(5+3)

[1] 8

We can change it to division, multiplication, etc.
There are also other operators such as the modulus. In this case it provides the

reminder of a division. For example, the expression 5%%2 would return 1 because 5
divided by 2 has a quotient of 2 and a remainder of 1, while 12%%3 would evaluate
to 0 because the division of 12 by 3 has a quotient of 4 and leaves a remainder of 0.

>print(5%%2)

[1] 1

The exponent operator returns the exponent of the base a raised to the power of
b.

>print(2^2)

[1] 4

Finally the floor division, which is the following. If the reminder of a division is a
decimal number, then the floor division rounds it up to the previous whole number.

>print(22%/%7)

[1] 3

The division 22©7 returns the value 3.142857, but since it is a floor division, it is
rounded to the previous whole number that is 3.

Several mathematical operations are possible such as logarithms:

log(10)

[1] 2.302585

or sin or cos:

sin(1.571)

[1] 1
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where 1.571 is the value of π©2, since angles are in radians.
Numbers can be formatted according to a specific language as shown below.

> formatC(0.6569866,digits=2,format="e")

[1] "6.57e-01"

3.1.3 Relational

Relational operators are used to compare the actual values of two variables and then
the output is a boolean value (TRUE or FALSE). There are many types of relational
operators, such as

a Equal to � a==b

a Not Equal To � a! �b

a Greater Than � a%b

a Less Than � a$b

a Greater Than Equal To � a%�b

a Less Than Equal To � a$�b

The following examples shows two applications:

> a=4

> b=5

> a>b

[1] FALSE

> a=4

> b=5

> a==b

[1] FALSE

Also with a not equal to:

> 1!=1

[1] FALSE

Relational operators are used in condition statements.

3.1.4 Assigment

There are two types of assignment operators: Left and Right. It means that they can
go from left to right or from right to left.

For example for the Left: x � 3 is an equal symbol, but in R it is also possible
to use the x $ �3 symbol, that it means that the variable x has a value of 3. For the
Right 20 � x is an equal symbol, but in R it is also possible to use the 20 � % x
symbol, that it means the value of 20 is now assigned to the variable x.

Both of these directions are possible.
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> x=5

> x

[1] 5

But also assign the number 20 to the variable x.

> 20 ->x

> x

[1] 20

Also a name can be given to a variable and then check the value of that variable:

apple<- 6

> apple >2

[1] TRUE

In R vectors are created by using the instruction below:

> lemon <-c(2,4,5,2)

> lemon

[1] 2 4 5 2

but also with strings:

> gender <-c("M","M","M","F","F","F")

> gender

[1] "M" "M" "M" "F" "F" "F"

Vectors can also be created as

> minnie <- 1:6

> minnie

[1] 1 2 3 4 5 6

It can also be done with the seq() instruction. Where the first number is the minimum,
the maximum and the interval.

> minnie <- seq(1,10,2)

> minnie

[1] 1 3 5 7 9

It is possible to set the number of elements into an interval:

minnie2<- seq(1,20, length.out=5)

> minnie2

[1] 1.00 5.75 10.50 15.25 20.00

It is possible to identify the elements of a vector by using square brackets, where
the number identify the element in the vector.
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> minnie[1]

[1] 1

Or to extract the elements within an interval:

> minnie[1:3]

[1] 1 3 5

3.1.5 Functions

There are many functions in R that can be used. For instance, the minimum and max
values:

> min(minnie)

[1] 1

> max(minnie)

[1] 9

It is possible to determine the length of a vector:

cat <- c(1:1000)

length(cat)

It is possible to determine the mean of a vector:

> mean(minnie)

[1] 5

Numbers can be sorted:

> rabbit <-c(123,4,67,990,3,6)

> sort(rabbit)

[1] 3 4 6 67 123 990

And then assign it to a new vector:

> sorted_rabbit <-sort(rabbit)

> sorted_rabbit

[1] 3 4 6 67 123 990

A list is created, where the first element is number, the second a string and the third
a boolean:

jupiter <- list(2, "rabbit", T)

The elements can be called with the double squared bracket:

> jupiter[[2]]

[1] "rabbit"
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3.1.6 Logical

There are three types of logical operators; AND, NOT and OR.

a AND � a&b

a NOT � a¶b
a OR � !a

AND combined each element of vectors and gives an output TRUE if both elements
are TRUE, NOT combines each elements of a vector and gives an output TRUE if one
element is TRUE. Finally OR takes each element of the vector and gives the opposite
logical value. An example is:

> value1 =c(TRUE, FALSE, TRUE, FALSE)

> value2=c (FALSE, TRUE, TRUE, FALSE)

> print(value1 &value2)

[1] FALSE FALSE TRUE FALSE

So with the statement AND, it is checked when both values are TRUE. So each value
has been checked with the corresponding value of the two vectors. So only if both
values are TRUE, then only in that case it is printed that both values are TRUE.
Now, in case of an OR operator:

> value1 =c(TRUE, FALSE, TRUE, FALSE)

> value2=c (FALSE, TRUE, TRUE, FALSE)

> print(value1 |value2)

[1] [1] TRUE TRUE TRUE FALSE

In that case, only when both statement are FALSE, then it is printed as FALSE,
otherwise they are printed as TRUE, since the first vector or the second vector can
have a TRUE in the first, second and third position.

3.2 Matrix

Matrix are objects that are arranged into a two-dimensional layout.

a data is the input vector data becomes the data entry of the matrix

a nrow is the number of rows to be created

a ncol is the number of columns to be created

a byrow is a logical statement. If it is TRUE, then the input elements are arranged
by rows

a dimname is the name assigned to rows and columns

The statements is matrix(data,nrow,ncolumns,byrow,dimname).

> david <-matrix(data=1:20,5,4)

> david

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17
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[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

To get the values, the rows and colums are called:

> luca[1,2]

[1] 6

Another example on how to create a matrix is now presented:

#Matrix

mtr=matrix(c(5:29),5,5)

The instruction c(5:29) means that a sequence of numbers starting from 5 to 29
will be stored, which are 25 numbers. So there will be 25 elements with increment of
one. The number of rows are five and the columns are five. At this point we do not
need to specify an order of arrangment and a name. The output will be:

[,1] [,2] [,3] [,4] [,5]

[1,] 5 10 15 20 25

[2,] 6 11 16 21 26

[3,] 7 12 17 22 27

[4,] 8 13 18 23 28

[5,] 9 14 19 24 29

Without specification, R organize a matrix by columns, if we change it

mtr=matrix(c(5:29),5,5, TRUE)

then the output will be:

[,1] [,2] [,3] [,4] [,5]

[1,] 5 6 7 8 9

[2,] 10 11 12 13 14

[3,] 15 16 17 18 19

[4,] 20 21 22 23 24

[5,] 25 26 27 28 29

> is.matrix(luca)

[1] TRUE

The transpose can be computed

julie <-t(luca)

julie
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3.3 Array

An array is similar to a matrix. The syntax is

#Array

arr=array(c(0:15),dim=c(4,4,2,2))

, , 1, 1

[,1] [,2] [,3] [,4]

[1,] 0 4 8 12

[2,] 1 5 9 13

[3,] 2 6 10 14

[4,] 3 7 11 15

, , 2, 1

[,1] [,2] [,3] [,4]

[1,] 0 4 8 12

[2,] 1 5 9 13

[3,] 2 6 10 14

[4,] 3 7 11 15

, , 1, 2

[,1] [,2] [,3] [,4]

[1,] 0 4 8 12

[2,] 1 5 9 13

[3,] 2 6 10 14

[4,] 3 7 11 15

, , 2, 2

[,1] [,2] [,3] [,4]

[1,] 0 4 8 12

[2,] 1 5 9 13

[3,] 2 6 10 14

[4,] 3 7 11 15

This array will store sixteen elements. The instruction dim=c(4,4,2,2)) is used
to define the dimension of the array. The first two columns are specifying the standard
size of each matrix that is going to be stored into the array, then it will be stored into
a 2 cross 2 array (where the first indicates the column). Note that R prints the column
first and then the row. So the first matrix (1,1) is first colum, first row; the second one
is column 2, row 1 and so forth.
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3.4 List

The list is similar to the vector, but the only difference is that in a list we can store
different data types in a list. An example shows two vectors,

vtr7= c(5.6,9, 18)

vtr8= c("How are you", 'Fine thanks')

The first one is populated by numbers, while the second is populated by text. Now,
a list is created where we pass vtr7 and vtr8.

> list1= list(vtr7,vtr8)

> list1

[[1]]

[1] 5.6 9.0 18.0

[[2]]

[1] "How are you" "Fine thanks"

None of these variables have been converted, so the list preserve the original data
type.

3.5 Data Frame

A data frame is a table that can store the data into an order manner. It can be data
that have created in an excel spreadsheet from an experiment. An example on how to
create a data frame is provided.

>vtr1=c(1:5)

>vtr2=c("Lucio", "Fabrizio", "Anna", "Rita","Sofia")

>vtr3=c(65,80,60,63,72)

A data frame is created by passing the name of the vectors:

>data.frame(vtr1,vtr2,vtr3)

vtr1 vtr2 vtr3

1 1 Lucio 65

2 2 Fabrizio 80

3 3 Anna 60

4 4 Rita 63

5 5 Sofia 72
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Conditional Statements and Loops

There are three types of conditional statements. The first statement is the If state-
ment.

4.1 If statement

var1=20

var2=30

if ((var1+var2)>30) {

print("Greater than 30")}

[1] "Greater than 30"

So, when the condition is true then the statement is printed. If the value was 60

var1=20

var2=30

if ((Var1+var2)>60) {

print("Greater than 30")}

the program would not print anything, since the condition is not met and the program
does to execute the print statement.

4.2 Else If statement

If there are more than one conditions that must be checked, than we could use the
else if

if ((expression) 1) {

Statement

}

else if (expression 2)

{

Statement 2

}

Here an example is shown. It is important to use the correct indentation.

var1=20
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var2=30

if ((var1+var2)>60) {

print("Greater than 60")

} else if ((var1+var2)>40)

{

print("Greater than 40")

}

4.3 Else statement

The Else statement is executed if no other condition is met.

var1=20

var2=30

if ((var1+var2)>100) {

print("Greater than 100")

} else if ((var1+var2)>60)

{

print("Greater than 60")}

else print ("Number is less than 60")

So in this case, instead of doing nothing if the condition is not met, than the else

statement allows to get out of the loop. So all the conditions were checked, and if no
conditions was met, then the else statement allows for provide information about the
outcome of the conditional statement.

4.4 For loop

The For�loop is a control flow statement where an iteration of a given lenght is
specified, allowing for the code to be executed repeatedly. This instructions is very
important in programming since it allows to iteratively control and modify variables
in arrays or matrices and to perform operations over large number of data in a very
efficient way.

In general a for�loop is written in two parts: a header specifying the iteration,
and a body where the operation are executed, once per iteration. Usually the header
declares a counter or a loop variable that is used to determine how many times the
operations written in the body are executed.

Below is an example, where to the variable k1 is assigned ten numbers having
a normal distribution. The instruction rnorm() generate random numbers having a
normal distribution with mean equal to mean and standard deviation equal to sd. By
typing k1 the generated values are printed on the console, then the variable squared
is initiazed to zero. The For loop is then written by defining the number of times the
algorithm will iterate (1:10) and after the curly bracket the instructions are written.
The function squared[] is defined by the multiplication of k1 by itself. Note that the
variable i is the index of the iteration. Finally the values are printed to the console.
The index is also printed outside the loop.
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k1 <- rnorm(10)

k1

squared <- 0

for(i in 1:10) {

squared[i] <- k1[i]*k1[i]

print(squared[i])

}

print(i)

4.4.1 Nested For�loop

A nested loop is a loop within a loop, an inner loop within the body of an outer one.
The first pass of the outer loop execute the inner loop, then the outer loop is executed
again and it passes again into the inner loop and so forth.

Below is an example where the example above was modified by including an inner
loop that prints out the constant number 4 for two times. The counter j goes from
1:2, and the variable const is printed. This is not a very interesting operation but it
is useful to understand how nested loops work.

k1 <- rnorm(10)

k1

squared <- 0

const <- 0

for(i in 1:10) {

squared[i] <- k1[i]*k1[i]

print(squared[i])

for(j in 1:2) {

const[j] <- 4

print(const[j])

}

}

print(i)

print(j)

The output of this loop is shown here. The outer loop compute the squared number
of k1, it prints it to the console and then it execute the inner loop. The inner loop is
executed two times, printing the value of 4. The iteration goes back to the outer loop
and so forth.
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[1] 3.148467

[1] 4

[1] 4

[1] 0.007544777

[1] 4

[1] 4

[1] 1.913666

4.5 While loop

The While�loop is a control flow statement where an iteration of a given statement is
performed while a condition is met. In other words a test expression is evaluated and
the body of the loop is entered if the result is of this test is TRUE.

while (test_expression)

{

statement

}

An simple example is presented below

i <- 2

while (i < 12) {

print(i)

i = i+1

}

The output for this code is:

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

[1] 11
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Managing Data

5.1 Qualitative and quantitative data

In statistics, data are usually classified as qualitative and quantitative. Qualitative data
describes a specific attribute such as gender (male or female), or a general description
of age such as young, adult, elderly. On the other hand quantitative data are described
on a numerical scale. For instance, the air temperature in degree Celsius, or the age
of a person. Let’s assume that we have a group of six people, three men and three
women, respectively of age 9, 10, 50, 80, 14 and 91. Two vectors are now built using
a qualitative scale defined as ‘young’, ‘adult’ and ‘elderly’.

> gender <-c("M","M","M","F","F","F")

> age <-c("Young","Young","Adult","Elderly","Young","Elderly")

> str(gender)

chr [1:6] "M" "M" "M" "F" "F" "F"

> str(age)

chr [1:6] "Young" "Young" "Adult" "Elderly" "Young" "Elderly"

The instruction str() display the internal structure of an R object. In R there is a
convenient and powerful help, with the description of each command and function. It
is obtained by typing a question mark, followed by the name of the command.

> ?str()

In this case, when the structure of the vector gender and age were inquired, by using
the instruction str(), the program printed chr [1:6] followed by the names of the
elements. The chr indicates that the vector is populated by character values. The
character was described in the section above on data types.

In general computers and programming languages do not like to deal with char-
acters and text data such as words, symbols, etc. therefore it is often advisable to
convert a qualitative information into a numerical scale. The function factor is used
to encode a vector as a factor (the terms ‘category’ and ‘enumerated type’ are also
used for factors). factor returns an object of class ‘factor’, which has a set of integer
codes the length of x.

An example is the list of cities in Italy, when we are asked by a software to provide
our place of birth. The user will see a list of city to choose from (Agrigento, Ancona,
Avellino,..., Bari, Bologna,...). The computer will not store into the memory a list
of strings (character), but it will assign an enumerated type to each city. Depending
on the programming language, different instructions are used. In R, the category is
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assigned with the instruction factor. In this piece of code, a new variable is created
(age2), on which the returned values from the function factor are stored. When age2

is typed, the output is a list of the vector elements and the specification of the Levels.
When the the internal structure of the variable is inquired with str(), the output
returns a list of three enumerated codes (1,2,3) corresponding to the the three levels
(young, adult and elderly).

> age2<-factor(age)

> age2

[1] Young Young Adult Elderly Young Elderly

Levels: Adult Elderly Young

> str(age2)

Factor w/ 3 levels "Adult","Elderly",..: 3 3 1 2 3 2

Note that in this case, the attributes are ordered in alphabetical order. If not other
instructions are provided R orders the names in alphabetical order. If, an incremental
order of age is desired, it is possible to do so by using the ordered instruction, directly
into the factor command:

> age2 <- factor(age,levels=c("Young","Adult","Elderly"),ordered=TRUE)

> age2

[1] Young Young Adult Elderly Young Elderly

Levels: Young < Adult < Elderly

> str(age2)

Ord.factor w/ 3 levels "Young"<"Adult"<..: 1 1 2 3 1 3

#Here it assures that age is factorized as a number

age3 <- as.numeric(age2)

Note that now the numerical values are assigned with 1 for ‘young’, 2 for ‘adult’ and
3 for ‘elderly’, which is more intuitive since it is incremental with age. Now, the same
procedure is applied to the vector gender, where a new vector gender2 is created
using an ordered factor command, where the male has numeric value of 1 and the
female of 2.

> gender2 <- factor(gender,levels=c("M","F"),ordered=TRUE)

> gender2

[1] M M M F F F

Levels: M < F

> str(gender2)

Ord.factor w/ 2 levels "M"<"F": 1 1 1 2 2 2

The actual numeric value (quantitative) for the age of the group of people can now be
provided, by defining a vector numage.

> numage=c(9,10,50,80,14,91)

> numage

[1] 9 10 50 80 14 91

> str(numage)
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num [1:6] 9 10 50 80 14 91

The vector is now created containing the six ages as numerical value.

5.2 Import Data

There are different ways to import data in R. The most convenient one is reading the
data directly from a file or multiple files. For simplicity through this book, a dataset of
soil physical and chemical data will be used as a main example. However, other dataset
are always presented depending on a specific topic. Clearly the reader is encouraged
to apply the exercises to her or his own data. The data presented here were collected
during an experimental campaign in the Northern Italian Apennines Mountain Range
in the Emilia�Romagna region. In the table 5.1, a subset of a soil dataset is shown.

Table 5.1 Physical and chemical properties of soil profiles.

Soil horizon UD LD type thickness pHwater pHKCl sand silt clay
C1 A1 0 6 epi 6 4.7 3.4 832 130 38
C1 A2 6 16 epi 10 4.9 3.8 745 195 60
C1 B 16 27 endo 11 4.9 3.9 712 219 69
C1 BC 27 30 endo 3 4.1 4 689 219 92
C2 A1 0 6 epi 6 4.3 3.1 756 197 47
... ... ... ... ... ... ... ... ... ... ...

5.3 Open a Data File

As discussed above, it is not convenient to enter the data manually. R provides a
variety of option to read a data file.

5.3.1 Setting the working directory

First the working directory should be set by typing the pathway. Remember that you
must use the forward slash © in R. This operation can also be performed in RStudio,
by selecting the window Session and Set Working Directory.

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

By typing this statement (get working directory), the current working directory is
displayed.

> getwd()
"C:/Users/marco.bittelli.PERSONALE/Documents/Didattica/
R_class_4/exercises/Ch5_Managing_data"

The command dir() will list the folders and files contained in the directory. The home
directory in Windows R is set using the environment variable RUSER Set this using
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Windows (search from the Start Menu for ”environment variable”). Whatever you set
this to will become what R uses for .

> dir()

5.3.2 Read and open data files

Data can be stored in different formats. For instance they can be saved in the MS
Excel program, or as ASCII file such as comma separated file (.csv) or text file (.txt).
As an example the soil dataset is saved as Horizons.xls, Horizons.csv and Horizons.txt.

1. Open an excel file (.xlsx)

2. Open a comma separated file (.csv)

3. Open a text file (.txt or .dat)

5.3.3 Read an Excel file

It is possible to open excel files with the following instruction:

library(readxl)

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

Horizons <- read_excel("data/Horizons.xls")

5.3.4 Read a comma separated file

With the command below data are read, using the command read.csv that allows
for reading the data contained in the data file. This function is used to read data that
are organized in a matrix with data contained in each column, as shown in the section
above.

Horizons <- read.csv("data/Horizons.csv", sep = ",",

check.names = FALSE, header = TRUE,na.strings = c("NA", "NAN"), dec=".")

This command contains a series of arguments that can be specified.

1. data directory

2. sep

3. check.names

4. header

5. na.strings

6. decimal points

7. row names

The first row of the data file may contain information about the variable and it is
called header. If the file contains a header it should be specified by setting the argument
header = TRUE to TRUE. The argument sep = "," indicates the characters that is
used to separate the data. In our case it is a colon. If there are missing data then we
should specify how they are called in the data file. In this case the symbol for missing
data is NA. The instruction c(”NA”, ”NAN”) is used to concatenate the characters
into one vector, allowing for using both NA and NAN as symbols for missing data.
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5.3.5 Read a text file

The reading of a text file is very similar, with the instruction read.table.

income <- read.table("data/Horizons.txt", sep = ";",

check.names = FALSE, header = TRUE,

na.strings = c("NA", "NAN"), dec=".")

5.3.6 View and modify Data

After having imported the file into the dataframe Horizons, the data can be visualized
with the instructions View or edit. Information about the dataframe is obtained by
using the command str, which stands for structure. This command will provide infor-
mation about the number of observations, the number of variables and the datatype
of the variables, as shown below.

Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 136 obs. of 35 variables:

$ ...1 : chr "C1" "C1" "C1" "C1" ...

$ horizon : chr "A1" "A2" "B" "BC" ...

$ upper depth: num 0 6 16 27 0 6 15 21 0 4 ...

$ lower depth: num 6 16 27 30 6 15 21 30 4 10.5 ...

$ type : chr "epi" "epi" "endo" "endo" ...

To view the values of a specific variable, the dollar sign must be written after the
name of the dataframe. For instance the variable sand (in fraction over thousands) is
shown below.

Horizons$sand

[1] 832 745 712 689 756 772 743 738 719 756 610 540 670 670 643 754

547 756 742 868 784 821 505 758 715 740 678 657 838 771 716 716 713

it is possible to print all the value for this vector. The command edit() open an editor
windows

edit(Horizons)

that allows for performing a few simple operations. In many cases it can be useful
to have an index column (or an identification number ID) as a first left column with
simple incremental numbers for each record (1,2,3..., 32561). A simple way is to type

Horizons$ID <- seq.int(nrow(Horizons))

> income$ID

[1] 1 2 3 4 5 6 7 8 ...

that includes a variable ID to the data.frame. Typing Horizons$ID at the console,
returns incremental values from 1 to 32561.

A useful command is head(), that provides the header of the dataframe.

> head(Horizons)

It is possible to change the data type of a variable with the instruction
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> Horizons$ID <- as.integer (Horizons$ID)

5.3.7 Attaching

R objects that reside in other R objects can require a lot of typing to access. For
example in the example above to refer to a variable sand in the dataframe, one could
type Horizons$age. In some cases is not desirable to type long names and using the
dollar sign all the time. The attach() function in R can be used to make objects
within dataframes accessible in R with fewer keystrokes. By typing

> attach(Horizons)

> names(Horizons)

The instruction names() lists all the variable names. It is then possible to detach()

the data. The instruction attach() can lead to confusion since duplication of variables
can occur, so it should be used with care.
A useful command is the dimension command. It returns the dimension of a vector or
dataframe. In this case the dimension of the dataframe income, is of 32561 rows and
15 columns.

> dim(Horizons)

[1] 136 35

Another command that provides information is the lenght(), that returns the number
of observations in a vector or in variable

> length(Horizons$sand)

[1] 136

5.4 Managing Dates

Often in data analysis we are working with time series. To properly analyze time
series an efficient managing of date formats is necessary. The first step is to convert a
string or a number into a date format. Dates can be imported from character, numeric,
POSIXlt, and POSIXct formats using the as.Date function from the base package. In
the example below, two dates are read and assigned to the vector dates. As we have
described above R does not recognize this string as a date, but simply as a character
value char. Indeed by inquiring about the structure of the vector dates, it will return
a vector of two elements of character type.

> str(dates)

chr [1:2] "05/27/84" "07/07/05"

The as.Date function converts this vector character into a date format:

dates <- c("05/27/84", "07/07/05")

formattedDates <- as.Date(dates, "%m/%d/%y")
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Now the new vector formattedDates is a Date variable.

> str(formattedDates)

Date[1:2], format: "1984-05-27" "2005-07-07"

Another format may have letters as:

dates <- c("May 27 1984", "July 7 2005")

formattedDates <- as.Date(dates,

format = "%B %d %Y")

The ISO 8601 international standard format %Y-%m-%d is returned

> formattedDates

[1] "1984-05-27" "2005-07-07"

When importing data from Excel the format may be a numeric value. It is still possible
to import it and convert it.

dates <- c(30829, 38540)

formattedDates <- as.Date(dates,origin = "1899-12-30")

Since Excel defines an origin for the time, which is 1899, it must be specified.

> formattedDates

[1] "1984-05-27" "2005-07-07"
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5.4.1 Change Date Format

The format can be changed to a desired format as:

format(formattedDates,"%a %b %d")

[1] "Sun May 27" "Thu Jul 07"

which returs the day of the day of the week, the month and the day. Below is reported
a table with the most common formats:

Table 5.2 Conversion specifications for dates

Conversion Description Example
%a Abbreviated weekday Sun, Thu
%A Full weekday Sunday, Thursday
%b or %h Abbreviated month May, Jul
%B Full month May, July
%d Day of the month 01-31 27, 07
%j Day of the year 001-366 148, 188
%m Month 01-12 05, 07
%U Week 01-53 with Sunday as first day of the week 22, 27
%w Weekday0-6Sunday is 0 0, 4
%W Week 00-53 with Monday as first day of the week 21, 27
%x Date, locale-specific
%y Year without century 00-99 84, 05
%Y Year with century on input:

00 to 68 prefixed by 20, 69 to 99 prefixed by 19 1984, 2005
%C Century 19, 20
%D Date formatted %m/%d/%y 05/27/84, 07/07/05
%u Weekday 1-7 Monday is 1 7, 4

When importing data with only two digits for the years, R assumes that years 69
to 99 are 1969-1999, while years 00 to 68 are 2000–2068 (probably subject to change
in future versions of R). Often, this is not what it is intended to have happen. One
solution it provides is to assume all dates R is placing in the future are from the
previous century. Here the dates from 1984, 2005 and 2020 are imported. However, it
is not clear from what century. The instruction would return that 84 is 1984, 05 is
2005 and 20 is 2020.

dates <- c("05/27/84", "07/07/05", "08/17/30")

formattedDates <- as.Date(dates, "%m/%d/%y")

> formattedDates

[1]"1984-05-27" "2005-07-07" "2030-08-17"

With the instruction below it is possible to assign the date before today to the previous
century:

correctCentury <- as.Date(ifelse(formattedDates > Sys.Date(),

format(formattedDates, "19%y-%m-%d"),

format(formattedDates)))
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> correctCentury

[1] "1984-05-27" "2005-07-07" "1930-08-17"

with the ifelse it is selected if the dates are larger that the system date, then they
should be formatted as from the 1900 (previous century), Indeed today is:

> Sys.Date()

[1] "2020-10-05"

which is October, 5, 2020. Therefore the year 2030 was transformed into 1930. Obvi-
ously this is a solution that would not work with dates obtained from simulation into
the future such as climate scenarios.

5.4.2 Use dates and endpoints to select variables

When working with time series, various statistical analysis are performed over individ-
ual time intervals such as days, months or year. For instance when analysing weather
data, cumulative annual precipitation is of interest. In this example precipitation data
from 1961 to 2018, from five experimental station in the Emilia Romagna region are
analyzed. The sign is used to comment section of the code. The code is presented below

#CODE Ch5_2.R

### provides functionality for working with time series

library(xts)

library(lubridate) ### manage dates

library(ggplot2) ### allows plotting

library(dplyr)

library(readxl) ### import excel file

#The excel file Prec_ER_daily.xlsx is opened, the structure of the

#newly created dataframe is analysed and the data are visualized.

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

Prec_ER_daily <- read_excel("data/Prec_ER_daily.xlsx")

str(Prec_ER_daily)

View(Prec_ER_daily)

# Only data from the Piacenza station are analyzed

Prec_ER_daily_cadriano <- Prec_ER_daily[,c("date","cadriano")]

str(Prec_ER_daily_cadriano)

#save prec in a single vector (prec_cadriano) and read the first year

prec_cadriano <- Prec_ER_daily_cadriano$cadriano

firstYear <- year(Prec_ER_daily_cadriano$date[1])

firstYear

#plot(Prec_ER_daily_cadriano$date,Prec_ER_daily_cadriano$cadriano)
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#CUMULATIVE BY DAY

date<-as.Date(Prec_ER_daily_cadriano$date)

start <- date[1]

end <- date[365]

start

end

theDate

as.Date(theDate)

theDate<-start

theDate

vec_date<-vector()

precip<-vector()

prec_daily<-0

cumprec<-0

cumprec_vec<-vector()

i<-1

while (theDate <= end){

vec_date[i]<-theDate

prec_daily=prec_cadriano[i]

cumprec<-cumprec + prec_cadriano[i]

cumprec_vec[i]<-cumprec

output<-c(i,prec_daily,cumprec)

print(output)

theDate <-theDate + days(1)

i<-i+1

}

#plotting

plot(as.Date(vec_date),cumprec_vec,type="l")

#CUMULATIVE BY YEAR

# it reads the array of endpoints and subset by endpoints

#indexArray <- endpoints(Prec_ER_daily_cadriano$date, on = "years")

#print(indexArray)

#Then is runs a cycle over the years, for each year it reads the

#first index (first) and last (last) index from the endpoints.

#The first index is increments by one since the endpoints is fixed

#on the last value of the previous year.

#By using the indexes it selected the data subset for that year and save

#it into the variable prec.

#From these data various statistics (such as the cumulative value)

#are performed on the array. The command c() is used
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#to concatenate the values.

sumprec<-vector()

vec_year<-vector()

indexArray <- endpoints(Prec_ER_daily_cadriano$date, on = "years")

print(indexArray)

for (year in 1961:2018)

{

i = year - firstYear + 1

first = indexArray[i]+1

last = indexArray[i+1]

prec = prec_cadriano[first:last]

vec_year[i]<-year

sumprec[i]<-sum(prec)

output<- c(year, sumprec)

print(as.integer(output))

}

plot(vec_year,sumprec,type="h",xlab="Year",

ylab="Cumulative Precipitation [mm]")

The results of this program are plotted in Fig.5.1
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Fig. 5.1 Yearly cumulative precipitation at the Cadriano station in Emilia Romagna, Italy.
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Here another example is presented where dates are in the data file. The file is
organized as shown below. The first column contains the date (month, day and year),
the second column the time of the day (the data are collected every ten minutes), and
then the remaining columns contain soil water content data at 0.2, 0.4, 0.6, 0.8, 1, 1.2
and 1.4 meters below the ground surface. Data were collected from an experimental
station as presented in

Date Hour WC_0.2 WC_0.4 WC_0.6 WC_1.0 WC_1.2 WC_1.4

3/27/2012 15:20 0.311 0.324 0.374 0.257 0.364 0.296

3/27/2012 15:30 0.302 0.326 0.383 0.258 0.356 0.301

3/27/2012 15:40 0.316 0.323 0.401 0.254 0.356 0.301

3/27/2012 15:50 0.309 0.331 0.382 0.256 0.358 0.301

3/27/2012 16:00 0.299 0.327 0.367 0.262 0.363 0.303

3/27/2012 16:10 0.317 0.322 0.376 0.263 0.359 0.304

3/27/2012 16:20 0.286 0.324 0.458 0.262 0.358 0.301

3/27/2012 16:30 0.309 0.331 0.378 0.262 0.359 0.302

3/27/2012 16:40 0.324 0.331 0.383 0.267 0.359 0.303

3/27/2012 16:50 0.310 0.333 0.389 0.267 0.363 0.301

3/27/2012 17:00 0.312 0.326 0.493 0.265 0.356 0.299

3/27/2012 17:10 0.314 0.334 0.181 0.264 0.363 0.297

3/27/2012 17:20 0.309 0.332 0.396 0.261 0.371 0.299

Managing files with dates may be cumbersome since they can be presented in a variety
of different ways. In the example below, a data file with weather data is opened with
the instruction described above.

#CODE Ch5_3.R

library(xts)

library(lubridate)

library(ggplot2)

library(mice)

library(tseries)

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

myfield1 <- c("character", rep("numeric", 15))

suolo <- read.table("data/Suolo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield1, na.strings = c("NA", "NAN"))

myfield2 <- c("character", rep("numeric", 7))

meteo <- read.table("data/Meteo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield2, na.strings = c("NA", "NAN"))
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suolo$Data <- gsub("/","-",suolo$Data)

#replace the symbol "/" with the symbol "-" in the column Data

datastamp <- parse_date_time(suolo$Data, orders="mdy HM")

suolo$Data <- datastamp

## Here the axis are controlled

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2013-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot_soil<-ggplot(data = suolo,

aes(x = suolo$Data, y = suolo$WC_0.4))+

geom_line(color = "blue", size = 1) + ylim(0,0.6)

base_plot_soil +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

#Use of endpoints to plot one data a day

iii <- endpoints(suolo$Data, on = "days")

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot2_soil<- ggplot(data = suolo[iii, ],

aes(x = suolo$Data[iii], y = suolo$WC_0.2[iii]))+

geom_line(color = "blue", size = 2)+ ylim(0,0.6)

base_plot2_soil

+ scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

### Here the meteo data are plotted

meteo$Data <- gsub("/","-",meteo$Data)

datastamp <- parse_date_time(meteo$Data, orders="mdy HM")

meteo$Data <- datastamp

## Plot Average Temp

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot1_meteo<-ggplot(data = meteo, aes(x = meteo$Data, y = meteo$T_air))+

geom_line(color = "#00AFBB", size = 2)
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base_plot1_meteo + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Average Net radiation

base_plot2_meteo<-ggplot(data = meteo,

aes(x = meteo$Data, y = meteo$Radsol_netta))+

geom_line(color = "#00AFBB", size = 2)

base_plot2_meteo +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Precipitation

base_plot3_meteo<-ggplot(data = meteo, aes(x = meteo$Data, y = meteo$Pioggia))+

geom_line(color = "#00AFBB", size = 2)

base_plot3_meteo +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Define Endpoints for Meteo

jjj <- endpoints(meteo$Data, on = "days")

ggplot(data = meteo[jjj, ], aes(x = meteo$Data[jjj],

y = meteo$Pioggia[jjj]))+ geom_line(color = "#00AFBB", size = 2)

Note that in the instruction read.table, one of the argument is colClasses. With
this instruction a vector of classes is specified to be assumed for the columns. In this
example it is specified that the first column is a character (Data) and then there are
7 columns of numeric data.

myfield2 <- c("character", rep("numeric", 7))

The function gsub is used to substitute characters in a given vector. Here the backslash
in the date is replaced with a minus sign.

suolo$Data <- gsub("/","-",suolo$Data)

The next instruction is used to parse an input vector into POSIXct date-time object.
The POSIXlt and POSIXct represents calendar dates and times.

datastamp <- parse_date_time(suolo$Data, orders="mdy HM")

suolo$Data <- datastamp

First, the function allows parse_date_time()for specification of the order in which the
formats occur without the need to include separators and % prefix. Such a formatting
argument is refered to as ”order”. Second, it allows the user to specify several format-
orders to handle heterogeneous date-time character representations.
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5.5 Subsetting

In data analysis is often necessary to select and exclude variables and observations.
There are many different options to select a subset of data. The simplest one is to use
brakets. By using the example above with the income data.
With the use of square brakets, it is possible to select an interval for a specific variable.
In this example, observations 2 to 20 are selected for the variable pH_water

> Horizons$pH_water[2:20]

[1] "4.9000000000000004" "4.9000000000000004" "4.0999999999999996"

[4] "4.2999999999999998" "4.2999999999999998" "4.2999999999999998"

...

As it was presented in the example about the cumulative precipitation in Emilia Ro-
magna. A subset of the dataframe is obtained by using the square brakets, where the
first element are the rows and the second elements are the columns. In the example
below all the rows are selected, while only the columns date and cadriano are selected:

Prec_ER_daily_cadriano <- Prec_ER_daily[,c("date","cadriano")]

Another powerful option is to use the library dplyr that allows to use the function
subset in a very flexible fashion.

#CODE Ch5_4.R

#SUBSETTING

library(dplyr)

library(readxl)

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

Horizons <- read_excel("data/Horizons.xls")

View(Horizons)

edit(Horizons)

str(Horizons)

Horizons$pH_water[2:20]

newdata <- subset(Horizons, pH_water <= 5 & sand < 500 & type == "epi")

edit(newdata)

The subset can be used to class matrix or dataframe. The instruction is subset(x,
subset, select, drop = FALSE, ...), where x is the object to be subsetted, subset
is the logical expression indicating elements or rows to keep: missing values are taken
as false. select expression, indicating columns to select from a data frame. further
arguments to be passed to or from other methods.

To select one of more columns:

newdata <- subset(Horizons, select= c("pH_water","sand"))
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5.6 Merging

In many cases, there are many dataset with different information on the same statistical
properties. In the example below it can be useful to combine information about soil
profiles (saved in the dataset Profiles), with information contained with information
provided in the Horizons. The merging can be performed by exploiting the variable
Factor and the function merge.

In this section, data collected from different soil profiles are presented. Here the
data files are imported with the instruction read.csv.

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

Profiles <- read.csv(file = "/data/Profiles.csv", header = TRUE, sep = ",")

Horizons <- read.csv(file = "/data/Horizons.csv")

The data recorded in the Profiles are information about six soil profiles (C1,C2,C3,...)
corresponding to the ones in the file Horizons. The file Profiles contains informa-
tion about geographic location (latitude, longitude and altitude) as well as vegetation
coverage, Calcium and Carbon stock, which are not contained in the file Horizons

PROF COOR_X COOR_Y ALT VEG LIT Ca_stock C_stock_30 C_stock_O

1 C1 636811 4895267 1710 PRATO CEV 2.4 177 44

2 C2 637080 4895192 1697 CON CEV 2.5 157 93

3 C3 637557 4896855 1700 FAG CEV 6.5 178 65

4 C4 635826 4895003 2027 PRATO MOD 4.6 99 52

5 C5 635892 4895230 1939 MIRT MOD 2.7 193 80

6 C6 635763 4895302 1901 PRATO MOD 3.2 69 58

The data recorded in the Horizon are information regarding the profiles and horizons
With the following instruction the dataframe Horizons and Profiles are merged

into the dataframe Horizons.

#CODE Ch5_6.R

#MERGING

library(readxl)

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

Profiles <- read.csv(file = "data/Profiles.csv", header = TRUE, sep = ",")

Horizons <- read.csv(file = "data/Horizons.csv")

edit(Profiles)

edit(Horizons)

Horizons_merged<-merge(x = Horizons,y = Profiles,by.x = "Soil",by.y = "Soil")

edit(Horizons_merged)

The arguments x and y specify the dataframe to merge, while by.x and by.y specify
the mutual variables in the different dataframe. The operation adds columns to the
dataframe coming from the other dataset.
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Data Visualization

Before starting with any kind of statistical analysis, data should be looked at. Graphs
and charts allows for exploration and learning about the structure and nature of the
data. For instance, they allow for understanding the range of a variable, possible out-
liers, intervals. Moreover, effective data visualizations make it easier to communicate
ideas and findings to other people. Therefore before introducing basic and more ad-
vanced statistical concepts, data visualization is discussed. The general package for
visualization in R is plot. A more advanced package is ggplot. For many graphs plot
already provides enough option to obtain a high quality graph that can be used for
thesis, scientific papers, technical reports.

There are a variety of options to plot and represent data.

6.1 Create graphs using plot

The package plot is the generic package to create graph. The basic instruction is

plot(x,y,..)

where x and y are the two variables to plot and the dots indicate options. In the exam-
ple below, a radargram collected with Ground Penetrating Radar (GPR) is plotted.
For details about this geo�physical method see (?). As described above the instruction
attach is used to attach the database to the R search path. This allows for search-
ing the database by simply giving the variable names, without having to refer to the
dataframe each time.

#CODE Ch6_1.R

#PLOTTING

setwd("~/Didattica/R_class_4/exercises/Ch6_Data_Visualization")

GPR <- read.table("data/gpr.dat",

sep = "\t", header = T, na.strings = c("NA", "NAN"))

edit(GPR)

attach(GPR)

plot(ns, Amplitude1,

xlim=c(0,60) , ylim=c(-40000,40000),

type="l",
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pch=1,

cex=1,

col=1,

xlab="Time [ns]", ylab="Amplitude",

main="GPR radargram"

)

The default R plot pch symbol is 1, which is an empty circle. This value can be changed
to pch = 19 (solid circle) or to pch= 21 (filled circle) if points are used. To change
the color and the size of points, use the following arguments: col : color (hexadecimal
color code or color name). In this graph the col=1 is for black. The instruction type

= ”l” refers to lines. Other types are ”p” for points, ”b” for both, ”h” for histograms.

To plot two data series in the same plot, the following instruction can be used. The
instruction lines is used to add the new dataseries.

plot(GPR$ns, GPR$Amplitude1,xlim=c(0,60) , ylim=c(-40000,40000),col="black",

type="l",xlab="Time [ns]", ylab="Amplitude",

main="GPR radargrams")

lines(GPR$ns, GPR$Amplitude2, col="red",type="l")

The results are shown in Fig.6.1.
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Fig. 6.1 Example of data visualization. Radargrams obtained from GPR. Top: one data series,

bottom: two data series.

6.1.1 Plot modification

The plot can be modified by adding captions, determining the range of x and y, choos-
ing different plot type. In the example above the range of x and y was chosen, as well
as the color of the line, the captions and the graph title.

plot(GPR$ns, GPR$Amplitude1,xlim=c(0,60), ylim=c(-40000,40000),col="black",

type="l",xlab="Time [ns]", ylab="Amplitude",main="GPR radargrams")
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Figure 6.2 shows the numbers to be used to plot different kind of symbols for points.
The instruction to select the symbols is pch = . For instance pch = 0 is used to select
an empty square.

Fig. 6.2 List of plot symbols

6.2 Create graphs using ggplot

Generally, the instruction starts with ggplot(), supply a dataset and aesthetic map-
ping (with aes()). You then add on layers (like geom_point() or geom_histogram()),
scales (like scale_colour_brewer()), faceting specifications (like facet_wrap()) and
coordinate systems (like coord_flip()). In this first example, data from the data.frame
income are plotted for a first observation of data.

ggplot(data = income,aes(x=ID[], y = age[]))+ geom_point()

+ xlim(0,100) + ylim(10,70)

Fig. 6.3 Example of data visualization

The syntax of ggplot is straightforward. The data=data.frame is to provide the
data.frame to ggplot. Then aes stands for the aesthetic mappings to use for plot.
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Then we the addition sign (+), other options can be added to the plot. For instance,
here the plots is created with points and the limits of the x and y axis are defined.
Figure 6.4 shows the output of the instruction above, with the incremental ID number
and the age. This figure is not very informative since it simply list the age of the group
elements.
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6.2.1 Plotting data: examples

In this section and example on how to plot data collected in the experimental station
for soil and weather is presented. The R code is show below.

#CODE Ch5_3.R

library(xts)

library(lubridate)

library(ggplot2)

library(mice)

library(tseries)

setwd("~/Didattica/R_class_4/exercises/Ch5_Managing_data")

myfield1 <- c("character", rep("numeric", 15))

suolo <- read.table("data/Suolo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield1, na.strings = c("NA", "NAN"))

myfield2 <- c("character", rep("numeric", 7))

meteo <- read.table("data/Meteo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield2, na.strings = c("NA", "NAN"))

suolo$Data <- gsub("/","-",suolo$Data)

#replace the symbol "/" with the symbol "-" in the column Data

datastamp <- parse_date_time(suolo$Data, orders="mdy HM")

suolo$Data <- datastamp

## Here the axis are controlled

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2013-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot_soil<-ggplot(data = suolo, aes(x = suolo$Data, y = suolo$WC_0.4))+

geom_line(color = "blue", size = 1) + ylim(0,0.6)

base_plot_soil + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

#Use of endpoints to plot one data a day

iii <- endpoints(suolo$Data, on = "days")
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lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot2_soil<- ggplot(data = suolo[iii, ],

aes(x = suolo$Data[iii], y = suolo$WC_0.2[iii]))+

geom_line(color = "blue", size = 2)+ ylim(0,0.6)

base_plot2_soil + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

### Here the meteo data are plotted

meteo$Data <- gsub("/","-",meteo$Data)

datastamp <- parse_date_time(meteo$Data, orders="mdy HM")

meteo$Data <- datastamp

## Plot Average Temp

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot1_meteo<-ggplot(data = meteo, aes(x = meteo$Data, y = meteo$T_air))+

geom_line(color = "#00AFBB", size = 2)

base_plot1_meteo +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Average Net radiation

base_plot2_meteo<-ggplot(data = meteo,

aes(x = meteo$Data, y = meteo$Radsol_netta))+

geom_line(color = "#00AFBB", size = 2)

base_plot2_meteo +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Precipitation

base_plot3_meteo<-ggplot(data = meteo,

aes(x = meteo$Data, y = meteo$Pioggia))+

geom_line(color = "#00AFBB", size = 2)

base_plot3_meteo +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Define Endpoints for Meteo

jjj <- endpoints(meteo$Data, on = "days")

ggplot(data = meteo[jjj, ],

aes(x = meteo$Data[jjj], y = meteo$Pioggia[jjj]))+
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geom_line(color = "#00AFBB", size = 2)

R provides the possibility of including endpoints, with the following instruction:

iii <- endpoints(suolo$Data, on = "days")

## Here a vector giorni is created with the values of the dates at the endpoints

giorni <- date(suolo$Data[iii])

colril <- c(2:22)

It extract index values of a given xts object corresponding to the last observations
given a period specified by on. When the vector endpoints is specified, it returns

> iii

[1] 0 52 196

340 484 628 772

916 1060 1204 1348

1492 1636 ... ...

where the numbers are the index of the data corresponding to the endpoints of the
data for a given day.

ggplot(data = suolo[iii, ],

aes(x = suolo$Data[iii], y = suolo$WC_0.2[iii]))+

geom_line(color = "#00AFBB", size = 2)

Now that the endpoints have been created, it is possible to plot the variables from the
data.frame suolo, only at the endpoints.

6.2.2 Managing dates

ggplot2 supports three date and time classes: POSIXct, Date and hms. Depending on
the class at hand, axis ticks and labels can be controlled by using

scale_*_date

scale_*_datetime

scale_*_time,

respectively. Depending on whether one wants to modify the x or the y axis.

scale_x_*

scale_y_*

are to be employed.
In the code below the instruction parse date time is used to read the character

vector Data and transform it into a POSIXct object. This option is very useful since
R does not recognize a string as a date, therefore it must be instructed. The option
orders allows for specification of the order of days, month, years, hours, minutes, etc.
The instruction below is used to save on the vector Data the new format for the dates.
The complete program is shown below.
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#replace the symbol "/" with the symbol "-" in the column Data

suolo$Data <- gsub("/","-",suolo$Data)

datastamp <- parse_date_time(suolo$Data, orders="mdy HM")

suolo$Data <- datastamp

library(xts)

library(lubridate)

library(ggplot2)

library(mice)

library(tseries)

setwd("~/Didattica/R_class_3/exercises/OpenDataFiles")

myfield1 <- c("character", rep("numeric", 15))

suolo <- read.table("~/Didattica/R_class_3/exercises/

OpenDataFiles/data/Suolo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield1, na.strings = c("NA", "NAN"))

myfield2 <- c("character", rep("numeric", 7))

meteo <- read.table("~/Didattica/R_class_3/exercises/

OpenDataFiles/data/Meteo_Montue_Giugno2019.csv",

sep = ";", check.names = FALSE, header = T,

colClasses = myfield2, na.strings = c("NA", "NAN"))

suolo$Data <- gsub("/","-",suolo$Data) #replace the symbol

"/" with the symbol "-" in the column Data

datastamp <- parse_date_time(suolo$Data, orders="mdy HM")

suolo$Data <- datastamp

## Here the axis are controlled

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2013-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot_soil<-ggplot(data = suolo,

aes(x = suolo$Data, y = suolo$WC_0.4))+

geom_line(color = "blue", size = 1) + ylim(0,0.6)

base_plot_soil + scale_x_datetime
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(limits = lims,date_labels = "%d/%m/%y %H:%M")

#################################

#Use of endpoints to plot one data a day

iii <- endpoints(suolo$Data, on = "days")

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot2_soil<- ggplot(data = suolo[iii, ],

aes(x = suolo$Data[iii], y = suolo$WC_0.2[iii]))+

geom_line(color = "blue", size = 2)+ ylim(0,0.6)

base_plot2_soil +

scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

### Here the meteo data are plotted

meteo$Data <- gsub("/","-",meteo$Data)

datastamp <- parse_date_time(meteo$Data, orders="mdy HM")

meteo$Data <- datastamp

## Plot Average Temp

lims <- as.POSIXct(strptime(c("2013-07-21 00:00","2014-11-23 00:00"),

format = "%Y-%m-%d %H:%M"))

base_plot1_meteo<-ggplot(data = meteo, aes(x = meteo$Data, y = meteo$T_air))+

geom_line(color = "#00AFBB", size = 2)

base_plot1_meteo + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Average Net radiation

base_plot2_meteo<-ggplot(data = meteo,

aes(x = meteo$Data, y = meteo$Radsol_netta))+

geom_line(color = "#00AFBB", size = 2)

base_plot2_meteo + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")

## Plot Precipitation

base_plot3_meteo<-ggplot(data = meteo,

aes(x = meteo$Data, y = meteo$Pioggia))+

geom_line(color = "#00AFBB", size = 2)

base_plot3_meteo + scale_x_datetime(limits = lims,date_labels = "%d/%m/%y %H:%M")
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## Define Endpoints for Meteo

jjj <- endpoints(meteo$Data, on = "days")

ggplot(data = meteo[jjj, ], aes(x = meteo$Data[jjj], y = meteo$Pioggia[jjj]))+

geom_line(color = "#00AFBB", size = 2)

An example of the output for air temperature is shown below.
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Fig. 6.4 Example of data visualization for air temperature
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Probability

7.1 Definition

The definition of ”probability” is closely linked to the intuitive definition of a random
(or random) event. An event is random when its occurrence cannot be predicted in a
deterministic way, due to an imperfect knowledge of the conditions that lead or not
to its occurrence. Let’s clarify with a classic example: the toss of a coin produces the
”heads” event or the ”tails” event in a way that cannot be predicted: the result of the
toss of a coin (or die, or the drawing of a card from a deck) is a random event. In reality,
the event itself would be perfectly determined from a physical point of view: if the coin
were thrown under the exact same conditions, the result would always be the same;
therefore the event is random due to our ”ignorance”about the initial conditions. More
complex examples can be given. The exact duration of a train journey is a random
event, as it depends on ”accidental” factors which are, as such, not predictable. The
weight of an object is random as, due to accidental errors, the scale produces a different
result in a series of repeated measurements.

The definition of probability is still a controversial topic, which divides two differ-
ent schools of thought. For our purposes, it is sufficient to introduce the concept of
probability in the simplest situations, and then generalize the definition.

It is intuitive to assign a value of 0 to an event that cannot occur. Just as, in
everyday language, we are used to assigning a probability 1 to a certain event (for
example, the probability that the height of a human being is less than 3 meters is 100%,
i.e. 1). To define the probability in intermediate cases, it is necessary to introduce some
auxiliary concepts:

7.1.1 Definition of probability in terms of relative frequency

The definition of probability in terms of

P �
M

N

and it can be calculated as proportion of favoreable cases (M) with respect to
the total number of cases (N), makes sense only when the events are reduced to a
”pattern of cases” and, moreover, are finite in number. This situation rarely occurs in
practice, and it is therefore necessary to introduce other definitions of probability. The
analysis of this equation suggests a possible definition, even when events do not form a
complete class etc. Let’s think, for example, of throwing a dice: even if we do not resort
to any symmetry property (the one that allows us to assign p = 1/6 to the output of
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each single face), supposing we roll the die a large number of times and to record the
frequency of each result on a sheet, we will have obtained at the end of a total number
of throws N1 times one, N2 times two,. . . .., N6 times six. It seems natural to define
the probability of the various results through their relative frequency N1©N , N2©N ,. . .
.., N6©N . We observe, in fact, that the relative frequency is a number between 0 and
1 and that it is clearly indicative of the ”probability” of obtaining a certain result (if,
for example, in 100,000 throws the number 1 never comes out, we can begin to think
that the die is loaded).

The above is in summary the content of a theorem proved by Bernoulli and known
as the ”law of large numbers” described below, for which the relative frequency of an
event tends to its probability when the number of ”proofs” tends to infinity as shown
above.

7.1.2 Axiomatic Definition of probability

The above definition is not entirely satisfactory. The main problem is that the def-
inition in terms of relative frequency requires to be able to repeat an experiment a
large number of times (even if only ”conceptually”), and this is not always possible or
reasonable. From a mathematical point of view, probability can be defined as follows:
given an event E, we assign to E a number P�E� which we call probability of E, which
satisfies the following conditions:

a P�E� is greater than or equal to 0

a P�E� = 1 only if E occurs with certainty

a Given two incompatible events A and B, the probability of their sum is equal to
the sum of their probabilities: P�A � B� � P�A� � P�B�
Incompatible events are events that cannot occur at the same time. For instance,

when rolling a die and event A is to roll a 1, 2, or 3 and event B is to roll a 4, 5, or
6, then events A and B are incompatible. It is not possible to simultaneously obtain
both a 2 and a 5 when rolling a dice. Only one of the two events can occur. These
properties and the axioms will be defined in more details in the sections below.

7.2 Sample Space and Events

In random experiments the list of all possible outcomes is called the sample space,
usually detoned by S. Sample spaces can be finite or infinite, and the elements can be
continuos or discrete. F is a set of subsets or better a family of sets or, with the event
nomenclature, a family of events with given properties. A few examples are given here
for the rolling of a die:

a What is the change of getting 1 when rolling a die. Assuming that the due is fair,
the change is one in size, therefore 1/6.

a What is the chance of getting a 1 or 2. One and two are two of the equally possible
one sixths, therefore the change of getting 1 or 2 is 2/6 = 1/3.

a What is the change of getting 1, 2, 3, 4, 5 or 6. Obviusly it is 100 %.
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a What is the chance of not rolling a 6? This change can be obtained by knowing
that the change of getting a 6 is 1/6, therefore the 16.6 %, as a consequence the
change of not getting a 6 is 100 % - 16.6 % which is 83.3 % (equivalent to 5/6).

Further examples could be presented, including also the throwing of multiple dice.
From a mathematical standpoint to describe changes and probability, set theory is
employed. We refer to classic books for set theory, where the concept of set and its
properties are described in details. For instance, the throws of dice is an example of
events:

a A: “The dice displays an even number”, identified by the set A � r2, 4, 6x
a B: “The dice displays a number $ 3. B � r1, 2x
a C: “Event = 6” . C � 6

The totality of events is named S. The set rA,B, r6x,Sx is a family of events, asrA,Bx is as well, rΩ,ox, etc. Also the ro,Ωx sets are all possible subsets of S and
they form a family. How many subsets of Ω are possible ? For instance, in one throw,
how many are the possible events ?

A general classification of events is:

a Full group of events: a set of events forms a complete group when at least one of
them occurs with certainty. Example: heads, tails in the flip of a coin.

a Incompatible events: two events are incompatible if they cannot occur simultane-
ously. Example: score 2 and score 3 when rolling a die.

a Equally likely events: two events are equally likely if there is no reason to assign
them a different probability. This concept is somewhat unsatisfactory, because
it suffers from ”circularity” (that is, it requires having already defined the prob-
ability). However, it can be justified by resorting to considerations of symmetry
(think of the faces of a die) or the principle of insufficient reason: if I know nothing
about two events, I have no reason to consider one more probable than the other.

a Elementary events and compound events: an event is elementary when it cannot
be decomposed into other events. For example, the event ”the drawn card is a two
of spades” is an elementary event. An event is said to be composed when it can
be obtained as a ”sum” of elementary events. For example: ”the result in the roll
of a die is an even number” corresponds to the sum of the events ”a 2 comes up”,
”a 4 comes out” and ”a 6 comes out”.

Elements of a set can be mutually exclusive if two or more outcomes cannot occur
simultaneously, and they are exhaustive if all possible outcomes are present in the
list. It means that every time the experiments is performed one of the outcome of
the sample space will occur. A collection of elements belonging to the sample space is
called an event and set theory is employed to derive relationships between events and
to derive probabilities.

In set notation the sample space S is called universal set, the set that includes all
the possible outcomes, while an event A is called a subset. The main set operations
are:
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a Union. The union of two sets A and B is a set of all elements which belongs to A,
to B or to both. It is written as A < B � �x " A or x " B or both�.

a Intersection. The intersection of two sets A and B is a set which contains all the
elements common to A and B. It is written as A =B � �x " A and x " B�.

a Complement. The complement A
c
of a set A is the set of elements which belongs

to the universal set S but do not belong to A
c
. It is written as A

c
� �x � A�.

Set operations can be represented by the Venn diagrams as shown in Fig.7.1

S

A

B

A

B

A

B

A

SS S

Fig. 7.1 S is the universal set. From left to right: the union A<B, the intersection A=B, the

complement A
c
of A and the complement of A

c
intersection B, A

c
= B

A set that contains no element is called empty set and it is denoted o.
As described above two events A and B are mutually exclusive if A and B have no

elements in common, therefore their intersection is an empty set, A = B � o, in set
theory these two sets are called disjoint.

The probability of any events must satisfy three axioms:

a Axiom 1: 0 & P�A� & 1

a Axiom 2: P�S� � 1

a Axiom 1: P�A < B� � P�A� � P�B� if �A� and �B� are mutually exclusive.

7.2.1 Dice with R

In this section examples of probabilities are presented, by simulating the throwing of
dice with R.

The first example is to generate one number included between 1 and 6 with the
instruction sample. This instruction will be used many times throughout this book.
Sample generates random numbers and permutations. It takes a sample of the specified
size from the elements of x using either with or without replacement. The function has
the following arguments:
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sample(x, size, replace = FALSE, prob = NULL)

where x is either a vector of one or more elements from which to choose, or a positive
integer; size a non�negative integer giving the number of items to choose; replace
defines if sampling should be with replacement? prob a vector of probability weights
for obtaining the elements of the vector being sampled.

Sampling with replacement is used to find probability with replacement. In other
words, the probability of some event is computed where for instance there is a number
of balls, cards or other objects, and you replace the item each time you choose one, so
the overall total number of elements in the set does not change. This method results
in the possibility of choosing the same element multiple times. Indeed, by choosing
replacement, it is possible to pick a number and then put the number back in the
set, therefore the same number could be choose again. In this case the probability are
independent.

Sampling without replacement is a way to figure out probability without replacing
the element. In other words, the first chosen item is not replaced before choosing the
second and so forth. This dramatically changes the odds of choosing sample items.
Here the game of dice is implemented with some instructions. In the first example the
instruction sample is used to roll once a dice with 6 faces.

sample(1:6,size= 1, replace=TRUE)

The outcome of this computation is the simulation of one roll, determining random
numbers comprises between 1 and 6 as shown below.

> sample(1:6,size= 1, replace=TRUE)

[1] 4

> sample(1:6,size= 1, replace=TRUE)

[1] 3

> sample(1:6,size= 1, replace=TRUE)

[1] 4

The same instruction can be written as follows:

sample(1:6,1)

and the outcome will be the same. To roll the die ten times:

sample(1:6,size= 10, replace=TRUE)

and the outcome will be the ten numbers. Since replace is set to TRUE, there can
be pairs, triplets and so on of the same number.

[1] 1 6 5 1 3 3 5 6 1 2

The function samples allows for generating more numbers. In this example, two num-
bers are generated (like rolling two dice), they are visualized and them and summed
up. The same instruction can be placed into a function:



Sample Space and Events 51

dice= function(n){

sample(1:6,size=n, replace=TRUE)

}

outcome=dice(10)

outcome

and the same outcome is obtained.

tworoll= sample(1:6,size=2, replace=TRUE)

tworoll

sum(tworoll)

the outcome will be:

[1] 2 2

[1] 4

In the next example, a code is written to check the theoretical probabilities described
above. The die is rolled 1000 times and the numbers of times the number 2 is obtained
are counted.

s= sample(1:6,size=1000, replace=TRUE)

s==2

sum(s==2)

The outcome is

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE FALSE TRUE

FALSE FALSE FALSE..........

[1] 152

where the FALSE and TRUE are the results of the test s==2 executed 1000 times
and 152 is the number of times the outcome was 2. The proportion is 152/1000=
0.152, or 15.2 %. Since the probability for a single number should be 1/6 or 0.1666
or � 16 %, the outcome is a little smaller. If the die is rolled 10000 times, the results
obtained are 0.169, 0.160, 0.17, 0.168 and so forth. By increasing the number of rolls
the number gets closer and closer to the theoretical probability value. With 100000
rolls the number is always 0.1669, 0.1668 and so forth, therefore it is correct to the
second decimal.

In the example below the probability of obtaining the number 2 from a consecutive
and incremental number of rolls is computed.

count=1

rolls<-vector()

x<-vector()

for(rolls in 1:1000){

s=sample(1:6,size=rolls,replace=TRUE)
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#print(s)

summation<-sum(s == 2)

#print(summation)

ratio<-summation/rolls

print(ratio)

x[rolls]<-ratio

}

plot(x, type = "s", col = "red", lwd = 1,

main = "",xlab = "Number of rolls",

ylab = "Probability [-]")

The output of this program is plotted in Fig. 7.2
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Fig. 7.2 Fraction of die rolls that are 2 at each roll in a simulation. The proportion tends to

get closer to the probability 1©6 � 0.166 as the number of rolls increases.

At increasing numbers of rolls the probability �Pn� tends to stabilize around its theo-
retical value �P�. This tendency is described by the Law of Large Numbers.

7.2.2 Law of large numbers

Be Fn the relative frequency of success in n independent trials, and p the probability
of success in each trial. Then Fn, for n � �, converge in probability to p. Here with
it “converges in probability” means that the probability of the event: s¶Fn � p¶ $ ϵy
approximate 1, with large n and small ϵ. The law of large numbers is a theorem about
the probability of an event, valid in the framework of the adopted theoretical model.
It can be stated as:

The proportion �Pn� of occurrences with a particular outcome converges to the
probability �P� of that outcome, as increasing numbers are collected

It exists an empirical law that postulate: the frequency of success approximate the
probability P and the approximation tends to improve at the increasing number of
trials or experiments.
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7.2.3 Addition rule

Two probabilities are called mutually exclusive or disjoint if they cannot happen si-
multaneously. For instance the probability of obtaining 1 and an even number. The
probability can be summed. For instance the probability of getting 1 or 2:

P �1 or 2� � P �1� � P �2� � 1©6 � 1©6 � 1©3 (7.1)

Similarly, all the outcomes can be summed:

P �1 or 2, or 3, or 4, or 5, or 6� �
P �1� � P �2� � P �3� � P �4� � P �5� � P �6� �

1©6 � 1©6 � 1©6 � 1©6 � 1©6 � 1©6 � 1 (7.2)

This law is called addition rule, and it applies when the outcomes are mutually
exclusive.

7.2.4 Probability of mutually inclusive outcomes

In many instances, probabilities are not disjointed such for a deck of 52 cards.

Fig. 7.3 Card deck with 52 cards.

The 52 cards are split into four suits: club �º�, diamond �¶�, spade �¹� and heart�¸�. Each suit has its 13 cards labeled: A (ace), 2, 3, ..., 10, J (jack), Q (queen)
and K (king). Thus, each card is a unique combination of a suit and a label. The 12
cards represented by the jacks, queens, and kings are called face cards. The cards that
are club and spade are typically colored black while the other two suits are typically
colored red.

The question could be what is the probability that a randomly selected card is a
heart ? and what is the probability that a randomly selected card is a face ? In this
case the probabilities are not disjointed since it is possible to obtain a card that is a
heart and it is facecard.

To describe the probability it is convenient to graphically represent it with set
theory concept, the Venn Diagram. This diagram allows for representation of a number
of elements in a set that are shared with another set. On the left the oval encompass
the set of hearts �¸�, which are thirteen cards, while the oval on the right represents
the set for face card, which are twelve cards. When a card is both a heart and a face
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card it falls into the intersection of the ovals since it belongs to both sets. In set theory
this is called an intersection set. The intersection of two sets, A and B, denoted by
A=B, is the set containing all elements of A that also belong to B (or equivalently, all
elements of B that also belong to A.

If a card is a heart but not a face card than it falls on the left part of the left oval
(10 cards), likewise if a card is face card but not a heart it falls in the right part of
the right-oval (9 cards). The probability that a card is a heart but not a face card
is 10©52 � 0.19 and the probability that a card is a face card but not a heart is is
9©52 � 0.17.

10 93

Hearts

Face Cards

Fig. 7.4 Venn diagram for hearts and face cards.

The event that a randomly selected card is a heart is represented by A and the
event that it is a face card represented by B.

How is the event P �A orB� computed ? These events are not disjointed, since the
three cards J�¸�, Q�¸� and K�¸� are present in both categories. In this case the
addition rule for disjoint probabilities cannot be used. The Vienn Diagram is used.
Firsr the probabilities of the two events are computed:

P�A� �P�B�� � P��P�A����P�facecards� � 13©52�12©52 � 0.25�0.23 � 0.48 (7.3)

Using this calculation the three cards were counted twice, once for the hearts and
one for the face cards. The correction of this error is performed by using:

P�A or B� � P�¸ or facecard� �
P�¸ � facecard� � P�¸ and facecard� �

� 13©52 � 12©52 � 3©52 � 22©52 � 11©26 � 0.42

(7.4)

The general equation for two events A and B , disjoint or not, for the probability that
at least one of them will occur is

P�A or B� � P�A� � P�B� � P�A and B� (7.5)

In statistics the term or means and � or unless it is explicitly stated otherwise.
Thus, A or B occurs means A, B, or both A and B occur.
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7.3 Conditional probability and Bayes Theorem

Often data present interesting relationships between two or more variables that are
useful to investigate. For example a car insurance company will consider information
about a person’s driving history to assess the risk that they will be responsible for an
accident. These types of relationships are the realm of conditional probabilities.

7.3.1 Contingency Table

Let’s assume a dataset called photo_leaf_classification represent a sample of
1822 photos of leaves with a yellow spots from a fungal disease. Researchers have been
working to develop an image analysis algorithm based on machine learning (ML) to
improve the automatic classification of leaves having or not having yellow spots. The
1822 photos represents a test for their classification. Each photo gets two classifica-
tions: the first is called ML and gives a classification from a machine learning (ML)
system of either pred yellow spots or not (TRUE or FALSE). The algorithm presents
a system to classify a leaf without spots even if it has few spots. The independent test
was performed by a group of researchers with visual inspection and these data are
considered the reference source or truth.

The following contingency table summarizes the results of the study:

Truth

MachineLearning TRUE FALSE Total

PredTRUE 197 22 219
PredFALSE 112 1,491 1,603

Total 309 1,513 1,822

The question is now: If a leaf has the presence of spots by human inspection
(TRUE), what is the chance the ML classified correctly the photo as having spots
? The probability can be estimated using the data. Of the 309 leaves presenting spots,
the ML algorithm correctly classified 197 of the photos having spots. Therefore the
probability is

P �
197

309
� 0.638

What is the probability that a leaf that did not have the presence of spots was
correctly classified as FALSE from the ML algorithm. In analogy with the previous
computation:

P �
112

1603
� 0.069

7.3.2 Marginal and joint probabilities

The data presented in the contingency table lists row and column totals for each
variable separately in the photo classify data set. These totals represent marginal
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probabilities for the sample, which are the probabilities based on a single variable. For
instance, the probability based solely on the ML variable is a marginal probability:

P �
219

1822
� 0.12

This probability is the probability of predicted presence of spots over the photographed
leaves analyzed with machine learning.

If the estimation of the machine learning method and the direct observations are
combined, the probability is called joint probability

P �
197

1822
� 0.11

In this case it is the probability that both methods will reveal a presence of spots on
the 1822 leaves, in this case the probability is slightly smaller.

Summarizing, if a probability is based on a single variable, it is a marginal prob-
ability, on the other hand if the probability of outcomes for two or more variables or
processes is called a joint probability.

Truth

MachineLearning TRUE FALSE Total

PredTRUE 0.11 1.21 � 10
�2

0.12

PredFALSE 6.15 � 10
�2

0.82 0.88
Total 0.17 0.83 1

The probability can then be summarized into a table

Table 7.1 Joint probability distribution for the leaves classification data set.

Joint outcome Probability
ML is TRUE and truth is TRUE 0.1081
ML is TRUE and truth is FALSE 0.0121
ML is FALSE and truth is TRUE 0.0615
ML is FALSE and truth is FALSE 0.8183

7.3.3 Conditional probability and Bayes Theorem

Given two events A and B, the occurrence of A may or may not affect the likelihood of
B occurring. For example, if a box contains one white ball and ten black ones, drawing
the white ball makes certain (P � 1) the next drawing of a black ball. Conversely, if
the balls are returned to the box after the draw, the draw of the white ball has no
influence on the subsequent draw.

We denote by P �B¶A� the probability of B ”conditional”on the occurrence of event
A. We now define the probability of the product between two events, meaning that
event A � B consists of ”A occurs and B occurs” (for example, in the roll of a die,
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both A = ”2 comes out” and B = ”comes 3”, the event A � B = ”comes 2” on the
first roll and ”comes 3” on the second roll or with a second die). It is evident that
P �A �B� � P �A� � P �B� only if the two events A and B are independent. It can be
shown that, in general:

P�A � B� � P�A� � P�B¶A� (7.6)

therefore

P�A � B� & P�A� � P�B� (7.7)

with the equality that holds only if P �B¶A� � P �B�, that is, if B is independent of
A. It can also be shown (and it is intuitive) that if B is independent of A also A is
independent of B, and therefore the following holds:

P�A � B� � P�B� � P�A¶B� (7.8)

it follows that:

P�A¶B� � P�A � B�
P�B� (7.9)

and substituting equation 7.6 into 7.9 Finally:

P�A ¶ B� � P�A� � P�B¶A�
P�B� (7.10)

From equation 7.10 it is possible to rigorously define what is defined as ”learning
from experience” and which is the basis of all sciences. Let’s see how. Suppose we are
dealing with a complete set of incompatible events H1, H2, . . . ,HN , which we will call
”hypothesis” for reasons that will be clear shortly. For each of the hypotheses Hi we
can apply the equations above:

P�Hi ¶ E� � P�Hi� � P�E¶Hi�
P�E� (7.11)

where E is any event. Since E occurs in conjunction with only one of the Hi (by
definition, since the Hi are incompatible), we can therefore write:

E � E � H1 � E � H2 � ... � E � HN (7.12)

from the addition formula we have

P�E� � P�E � H1� � P�E � H2� � ... � P�E � HN� (7.13)

and from 7.7:

P�E� � P�H1� � P�E¶H1� � P�H2� � P�E¶H2� � ... � P�HN� � P�E¶HN� (7.14)

therefore
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P�E� � N

=
i�1

P�Hi� � P�E¶Hi� (7.15)

Therefore equation 7.10 becomes:

P�Hi ¶ E� � P�Hi� � P�E¶Hi�
<N

i�1 P�Hi� � P �E¶Hi� (7.16)

Equation 7.16 is known as Bayes equation, and it allows to compute how our
confidence is updated in the hypothesis H every time a given event has occurred.
Overall, the Bayesian inference scheme is formally quite simple: the uncertainty about
a parameter θ after data y have been observed, is computed simply by specifying
P �y¶θ� (usually referred to as the likelihood l�θ, y� when viewed as a function of θ)
and P �θ�, and normalizing their product to make it a probability distribution.

It can also be described as: P�Hi ¶ E� is the posterior probability, P�Hi� is the
prior probability without the data, P�E¶Hi� is the likelyhood, which is the probability
that the data could be generated by the model with a given parameter value and

<N
i�1 P�Hi� � P �E¶Hi� is the evidence.

In the example above the machine learning predicted if a photo of a leaf displayed spots
from a disease. The estimation is not perfect (it has error) but it can be a very useful
and fast method to classify leaves based on automatized methods, rather than from
visual inspection. It is of interest to better understand how to use this information to
improve the ability to estimate a second variable, which for the example above is the
truth measurement.

7.3.4 Examples

Spotted leaves. We go back to the example of the spotted leaves. The probability
that a random photo from the data set present spots is about 0.17 (309/1822). The
question is: if we know that machine learning predicted that the leaf had spots, can
we get a better estimate of the probability that the leaf has indeed spots ? The answer
is yes. As an example a subset is selected of 219 cases where the ML classified the leaf
as TRUE (having spots):

P�truth is TRUE given ML has predicted TRUE� � 197

219
� 0.9

In this case the probability increased from 0.638 to 0.9 since the denominator was
smaller. It is called a conditional probability because the probability was computed
under a condition: the ML classifier prediction determine that the photo had spots
(TRUE). The conditional probability is made of two parts: the outcome of interest
and the condition.

It is useful to think of the condition as information we know to be true, and this
information usually can be described as a known outcome or event.

We generally separate the text inside our probability notation into the outcome of
interest and the condition with a vertical bar:
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P�truth is TRUE ¶ ML has predicted TRUE� � 197

219
� 0.9

It simply reads that the visual observation detects a spot since the machine learning
detected a spot, therefore the probability is 0.9.

In many cases, marginal and joint probabilities are provided instead of count data.
For example, disease rates are commonly listed in percentages rather than in a count
format.

Shooter. Two shooters each fire one shot at a target. The probability of the first
shooter hitting the target is 0.8, that of the second is 0.4. It is observed that the target
has been hit; what is the probability that it was the first shooter to hit him?
Solution:
Before the ”target hit” event, there are four possible hypotheses:

a H1 = both shooters miss

a H2 = both hit the mark

a H3 = the first hits the mark and the second doesn’t

a H4 = the second hits the mark and the first doesn’t

Given B1 = ”first shooter to score”, and B2 = ”second shooter to score”, the proba-
bilities of the four hypotheses are as follows (note that B1 and B2 are independent).
We denote, as before, with B

¬

’the event opposite to B.

a P�H1� = P�B¬1� � P�B¬2� = 0.2 * 0.6 = 0.12

a P�H2� = P�B1� � P�B2� = 0.8 * 0.4 = 0.32

a P�H3� = P�B1� � P�B¬2� = 0.8 * 0.6 = 0.48

a P�H4� = P�B¬1� � P�B2� = 0.2 * 0.4 = 0.08

The probabilities of E = ”hit target” conditional on the 4 hypotheses are, of course:

a P�E¶H1� = 0

a P�E¶H2� = 0

a P�E¶H3� = 1

a P�E¶H4� = 1

Once E occurs, H1 and H2 become impossible and the probabilities of H3 and H4

- conditional on the occurrence of E - become:

P�H3 ¶ E� � 0.48 � 1

0.48 � 1 � 0.08 � 1
�

6

7
(7.17)

and
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P�H4 ¶ E� � 0.08 � 1

0.48 � 1 � 0.08 � 1
�

1

7
(7.18)

The core of Bayes’ formula lies in 7.17 and 7.18. Before experiment (E) the probability
of hypothesis H3 was 48%, after the experiment its probability increased to 86%.

Although artificial, the example shows how experience changes our knowledge of a
phenomenon.

Equation says that the ”a posteriori probability”P�H¶E� of a hypothesis H given the
occurrence of the event E can be calculated by multiplying the ”a priori probability”
P�H� of the same hypothesis by the ”likelihood”of the experimental datum E, P�E¶H�,
divided by the probability of the event E.

The likelihood of event E (or experiment) given a hypothesis H measures how much
this event is ”compatible” with the hypothesis itself. In the simple example above, the
likelihood was 0 or 1, but this is generally not the case. Let’s see it with another, more
realistic example.

Clinical test. A clinical test gives a 90% accurate result, i.e. 90% positive and 10%
negative when performed on people with a certain disease M. Let’s assume the test
is 95% negative and 5% positive, when performed on healthy people. It can also be
described having 10% of false negative and 5% of false positive.

The incidence of M disease in the population is known, for example this incidence
is 2%. The test is performed on a patient, which is positive. How likely is the patient
to really have M?
Solution:
The hypotheses H = ”the patient is sick” and H

¬

”the patient is healthy” have, before
the test, the following probabilities: P�H� � 0.02 and P�H¬� � 0.98. After the T test
(positive), we have:

P�H¶T� � P�H� � P�T¶H�
P�T� �

0.02 � 0.9

0.02 � 0.9 � 0.98 � 0.05
� 0.27

If we have no other indications that the patient is suffering from M, the probability
that he is ill - once the test is positive - is 27 %. This surprising result is due to the
low a priori probability of the disease M.

What if the test gives more ”false positives”, for example if the probability of the
test being positive on healthy people is 10%? In this case, the numerator does not
change, but the denominator becomes:

P�H¶T� � P�H� � P�T¶H�
P�T� �

0.02 � 0.9

0.02 � 0.9 � 0.98 � 0.1
� 0.15

from which: P�H¶T� decrease to 15.5%.
A simple code in R is shown below.

content# H = sick patient

# A priori Probability

p.H <- 0.02

p.notH <- 1 - p.H

p.T.givenH <- 0.9
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p.T.given.notH <- 0.1

p.T <- p.H*p.T.givenH + p.notH*p.T.given.notH

(p.H.givenT <- p.H*p.T.givenH/p.T)...

Lighthouse

This example is taken and reworked from Gull (1988) in ”Bayesian inductive inference
and maximum entropy”, in Maximum entropy and Bayesian methods in science and
engineering, Kluwer.

The example is remarkable for at least three reasons. (1) It shows how the Bayesian
approach is a “ paradigm ” that includes techniques normally used in a more or less
uncritical way. (2) It shows how the mean is not always the best estimate of a random
quantity, and how the solution exists even when the central limit theorem does not
hold. (3) Finally, it shows how the information present in the data always wins in
the end, if it is sufficient, and how the influence of the first choice of the a priori
probability becomes negligible as the experimental data grows.

Description

A lighthouse is in a certain position on a straight stretch of coastline, at a position X0

along the beach, measured from an arbitrarily chosen origin, and at a distance of Y0

from the sea. The lighthouse is in constant rotation and emits short collimated flashes,
at random time intervals (and therefore θ angles). Photo detectors on the beach record
the flash, but not the θ angle from which the beam is coming.

The experimental data is the set of rxkx positions of the photo - detectors that
have been activated by a flash.

Suppose, for simplicity (just so as not to have to infer two parameters, but only
one) we know the distance Y0. What is the X0 position? How can we estimate it from
the data?

X0

Y0

q

Sea

Land

photo detectors
x1 x2 xk

X0 = distance along the coast

Y0=  distance from the sea

Fig. 7.5 Schematic of the problem

Solution

At each xk correspond an azimuth value θk. For the light beam to be visible, the angle
must be between �π©2 and π©2 (extremes not included), i.e .:
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θk " ��π

2
,
π

2
	

Obviously, if the angle is exactly �π©2 the light beam does not hit the coast. Realis-
tically we can assign a uniform probability density to the azimuth θk, that is to the
k � th datum. If we denote by X the unknown position (while Y0 is known):

p�θk¶X,Y0� � 1
π

The value 1
π
comes from the integration of the uniform probability distribution:

E ��

��

p�θ�dθ � 1

In this case, the integral is definite:

p�θk¶X,Y0� � E π©2

�π©2
p�θ�dθ � 1

π©2 � ��π©2� � 1
π

Trigonometric considerations, when X0 is known, allow us to say that:

Y0tan�θk� � xk �X0

By knowing X0, Y0 and xk, the tan�θk� is obtained and the angle is obtained with the
arc tangent function.
The position of the photo�detector activated by the light beam is therefore:

xk � X0 � Y0tan�θk�
and the tangent of the angle is:

tan�θk� � xk �X0

Y0

therefore the angle is

θk � atan �xk �X0

Y0



We use the variable transformation from θ to x to get the probability density of xk. If
x � x�θ�, for dx and dθ infinitesimal:

p�x�dx � p�θ�dθ
therefore

p�x� � p�θ� »»»»»»» dθdx »»»»»»»
(the reason for the absolute value is that it must be a length ratio, i.e. always positive).
The derivative dθ©dx is given by the derivative of the arc tangent with respect to x
which is:
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dθ

dx
�

Y0�Y 2
0 � �xk �X0�2�

while p�θ� � 1©π as shown above.
Finally:

p�xk¶X0, Y0� � Y0

π �Y 2
0 � �xk �X0�2�

In summary, if we know the �X0, Y0� position of the lighthouse, the probability of
recording a flash at the xk position has the Cauchy distribution. The Cauchy dis-
tribution is explained in details in the next chapter about probability distributions.
The Cauchy distribution is often used in statistics as an example of a ”pathological”
distribution since both its expected value and its variance are undefined. The Cauchy
distribution does not have finite moments of order greater than or equal to one.

NOTE: If we did not know the distance Y0 of the lighthouse from the sea, we would
have to estimate two parameters, a somewhat more complex problem (the solution of
which risks overshadowing what we are interested in showing here).

To estimate (infer) the X parameter (the position of the light beam), we need to
estimate the posterior probability of X, given Y0 and the records rxkx:

p�X¶xk, Y0�
From Bayes’ theorem:

p�X¶rxkx, Y0� � p�rxkx¶X,Y0�p�X¶Y0�
p�rxkx¶Y0�

The term in the denominator does not depend on the parameter sought. The first
term of the numerator is what is called the “ likelihood ” of the data, the second is the
a priori probability of X. When we have no idea what a priori distribution a variable
has, it is reasonable to take it uniform in a sensible range �Xmin, Xmax� and zero
outside:

p�X¶Y0� � p�X� � vα, X " �Xmin, Xmax�
0, X � �Xmin, Xmax� (7.19)

If the data xk are independent, as it is reasonable to assume, the probability
p�rxkx¶X,Y0� is the product of the probabilities of the single events xk, therefore:

p�rxkx¶X,Y0� � N

5
k�1

p�xk¶X,Y0�
Take the logarithm of the posterior probability p�rxkx¶X,Y0�
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L � log�p�rxkx¶X,Y0� � β �
N

=
k�1

log�Y 2
0 � �xk �X�2�

where β includes everything that does not depend on the X parameter. The esti-
mate of the position X0 is obtained by looking for the maximum of the a posteriori
distribution, that is, theoretically looking for the value of X which is a solution of:

dL

dX
� 2

N

=
k�1

xk �X

Y 2
0 � �xk �X�2 � 0 (7.20)

Numerical procedure

The explicit solution of (7.20) is not analytically feasible. Instead of solving it numeri-
cally, it is more instructive to see how the posterior probability exp�L� behaves as the
number of detections rxkx changes. This is what the following R code does, where we
assume Y0 � 1 km and the “ true ” value of X0 2 km. The code generates N angles θk
and from these it calculates xk, since the true value of X0 is known.

##Ch7_3.R
## Where is the light ?

# distance from sea
Y0 <- 1
# distance along the coast
X0 <- 2
# possible values of X (positions of photo-detectors)
dx <- 0.05
X <- seq(-5,5,dx)
Nx <- length(X)

######################################################################
# numero di rilevazioni
# da variare per osservare l'effetto sulla distribuzione a posteriori
N <- 10
######################################################################

# tetak <- runif(k,-pi/2,pi/2)
# instead of taking theta between -pi/2 and pi/2
# theta is selected such to determine "possible" x
# included between -x_max and x_max
x.max <- 50
# Here the angle is obtained using the arctan function, where x.max in an angle
tetak.max <- atan(x.max)
tetak <- runif(N,-tetak.max,tetak.max)
tetak
# compute the positions of the detectors activated by flash light
xk <- X0+Y0*tan(tetak)
# What is the distribution of the positions ?
hist(xk,main="")

L <- rep(0,Nx)
for (i in 1:Nx){
lk <- log(Y0^2+(xk-X[i])^2)
L[i] <- sum(lk)
}
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hist(lk)

# posterior probability
post <- exp(-L)
plot(X,dx*post/sum(post),t="l",ylab="p(X|x,Y0)")
abline(v=2,col="blue",lty=2)
abline(v=mean(xk),col="red")

Results

This is what happens (typically, the calculation is stochastic ...) as the number of
detections changes.
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Fig. 7.6 N = 4

The true value (in blue) and the average value of xk (in red) are superimposed on
the probability density curve. Due to the choice of a uniform distribution for θ (which
is reflected in a Cauchy distribution for likelihood), and a uniform a priori probability,
with little data the maximum posterior probability rarely hits the real position X0.

For N � 100 detections, the maximum a posteriori probability starts hitting the
true value (figure 7.8) practically always, but the average value of xk can be very far
from it.

At first sight this thing is surprising, because we are used to attribute almost “
magical ” properties to the average value, by virtue of the central limit theorem which
asserts that for a sample rx1...xnx, trait from a distribution with mean µ and variance
σ
2
the distribution of the mean value x̄ tends to a normal distribution with mean µ

and variance σ
2©n, for n��.

The problem here is that the Cauchy distribution violates the validity conditions
of this theorem, because it has large tails and such as to give a moment of order
2 of infinite value. From this example we can observe that although the central limit
theorem is not valid, and therefore the average is not a sensible estimate of the position
of the lighthouse, we can still calculate the a posteriori distribution and the maximum
of this gives us the correct position of the lighthouse. We note, incidentally, that
this procedure coincides with the search for the maximum likelihood! In addition to



66 Probability

−4 −2 0 2 4

0.
00

00
0.

00
15

X

p(
X

|x
,Y

0)

−4 −2 0 2 4

0.
00

00
0.

00
10

0.
00

20

X

p(
X

|x
,Y

0)

−4 −2 0 2 4

0.
00

00
0.

00
10

0.
00

20

X

p(
X

|x
,Y

0)

−4 −2 0 2 4

0.
00

00
0.

00
15

X

p(
X

|x
,Y

0)

Fig. 7.7 N = 10

shedding light on the latter, whose motivation is often unclear in any other way,
it is evident that nothing prevents us from using information on the position of the
lighthouse, if we have it, and using it by imposing a different form of a priori probability,
and making the calculation of the true position correct and faster.



Probability and determinism: the Buffon’s needle 67

−4 −2 0 2 4

0.
00

0
0.

00
3

0.
00

6

X

p(
X

|x
,Y

0)

−4 −2 0 2 4

0.
00

0
0.

00
3

0.
00

6

X

p(
X

|x
,Y

0)

Fig. 7.8 N = 100

7.3.5 Procedure for Baeysian Analysis

1. Identify the data to answer the question. Which variables to use and which vari-
ables to study or predict.

2. Formulate a descriptive model (mathematical formulation and parameters) for
the relevant data.

3. Specify a prior distribution on the parameters. The formulation should be realistic.

4. Use Bayesian inference to change the distribution and credibility of the probabil-
ities after data have been collected and analyzed.

5. Check that the posterior predictions mimic the data with reasonable accuracy. If
not, then consider a different descriptive model

7.4 Probability and determinism: the Buffon’s needle

An interesting example of a problem that can be solved with either a deterministic
approach or a probabilistic one is the Buffon’s needle. Buffon’s needle was the earliest
problem in geometric probability to be solved.

We draw on a piece of paper a series of parallel lines with distance among each
other of 2a. A needle, of length 2L, with L<a is dropped from above. The position of
the needle is identified based on the distance x from the centre of the needle to the
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closest line and with the angle θ generated from the intersection of the needle with
the lines.

2a
qa

b
2L

x

Fig. 7.9 Example of a needle (a) that lies across a line, and of needle (b) that does not.

The needle intersect the line if x & Lsinθ. The space Ω of the possible cases is
the “rectangle” of sides (a,π), since we consider the distance of the closest line and the
angle comprises between 0 and π.

To estimate the probability that the needle will intersect the line we must define a
space of favoreable cases F . From the condition defined above this space is comprised
between the line x � 0 and x � Lsinθ:

Fig. 7.10 “Rectangle” of sides (a,π)

We define the areas Ω and of F as a�Ω� and a�F � respectively.
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a�Ω� � πa

while:

a�F � � E π

0
Lsinθdθ � 2L

The ratio P � a�F �©a�Ω� is the seeked estimated probability P . Substituting the
values of a�Ω� and a�F � it leads to:

P �
2L
πa

Therefore, if we experimentally obtain p , from a sufficiently large number of throws,
it is possible to estimate the value of π:

π �
2L

aP

The R code below estimates the distribution of π in Nruns repetitions of the ex-
periment that consist in throwing the needle N times.

##Ch7_4.R

## Buffon's needle problem

# a is the half-distance between lines

a <- 1

# L is the half-length of the needle

L <- 0.8

# repeat the experiment Nruns times

Nruns <- 200

result <- rep(0,Nruns)

for (k in 1:Nruns){

#N is the number of throws of the needle

N <- 100000

#This instruction runif generates numbers with uniform distribution

#with intervals from min (0) to max (2a)

x <- runif(N,0,2*a)

# The distance x is defined as that from the nearest line

for (i in 1:N)

if(x[i]>a) x[i] <- 2*a-x[i]

#This instruction runif generates angles with uniform distribution

#with intervals from min (0) to max (pi)

theta <- runif(N,0,pi)

L_sin_theta <- L*sin(theta)
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# compute frequency of line-crosses

x<=L_sin_theta -> test

p <- sum(test==TRUE)/N

result[k] <-2*L/(a*p)

}

hist(result,main="Distribution of PI")

The results is depicted in Figure 7.4

Fig. 7.11



Probability Distribution 71

7.5 Probability Distribution

A probability distribution is a table of all disjoint outcomes and their associated prob-
abilities. The questions could be: what are the elements of the sample space S ? What
is the probability that the sum of two faces is equal to 5 ? and so forth. The total
number of possible combinations, therefore the sample space is S � 6 � 6 � 36.

A continuous probability distribution is a function that describes the assignment
of probabilities to the occurences of values taken by a variable. It is usually called
probability density function (PDF). The area of the probability density function is

E ��

��

f�x�dx � 1 (7.21)

Figure 7.5 shows the probability density function for a normal distribution with µ =
0 and σ= 1. The area under the curve is equal to 1.
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Fig. 7.12 Probability density function for a normal distribution having mean=0 and standard

deviation = 1.

The balancing point of the curve is called Expectation (E):

E�x� � E ��

��

xf�x�dx (7.22)

Expectation works on a random number. It defines the centroidal axis of the PDF and
is also known as the mean of x, m�x� � E�x�. A common measure of the dispersion
of the distribution of x is the variance of x:

var�x� � E ��x �m�x��2� � E
all x

�x �m�x��2f�x�dx (7.23)
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The covariance is defined as:

Cov�x, y� � E ��x � E�x���y � E�y��� (7.24)

the values of E�x� and E�y� are compareable to the mean, the center of gravity of the
distribution.

The PDF can be integrated to obtain a cumulative distribution curve (CDF) as
depicted in Figure 7.5
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Fig. 7.13 Cumulative density function for a normal distribution having mean=0 and standard

deviation = 1. Note that the cumulative curve reaches a value of 1, corresponding to the total

area of the PDF.

Random does not mean uniform, normal or other distribution. Many types of distri-
bution are possible for a random variable.

The code to plot the graphs for the PDF and CDF is shown below.

# Create a sequence of numbers between -10 and 10 incrementing by 0.1.

x <- seq(-10, 10, by = .1)

# Choose the mean as 0 and standard deviation as 1.

y <- dnorm(x, mean = 0, sd = 1)

y_cum<-pnorm(x, mean = 0, sd = 1)

plot(x,y,type="l",col="blue",xlim = c(-5,5),ylab=("PDF"))

plot(y_cum,type="l",col="green",ylab=("CDF"))

In the next chapter several distribution functions will be described.
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Example. The probability of the occurrences of the sum of two dice is presented in
Table 8.1. The total number of possible combinations is given by 6 � 6 � 36. Clearly
the probability of obtaining 2 is only 1©36 since it can be obtained only by 1 � 1. On
the other hand the combinations to obtain 3 are given by 2 � 1 or 1 � 2, therefore it
is 2©36 and so forth.

Table 7.2 Data of income depending on 5 measured features for 20 individuals

Dice Sum Probability
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

In the code below, two vectors for the sum and the probabilities as reported in
Table 8.1, are created and binded into a vector called prob.dist.

sum<-c(2,3,4,5,6,7,8,9,10,11,12)

prob<-c(1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36)

prob.dist<-c(sum,prob)

barplot(prob,names.arg=sum, main="",

xlab="Sum of two Dice",col="green")
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Then a bar plot of the distribution is plotted in Fig. 7.5
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Fig. 7.14 Probability distribution for the sum of two dice.

7.6 Exercises

1. From a pack of well-shuffled 52 cards randomly pick a card. Compute the prob-
ability to pick a heart or an ace. Hint: the card ace of heart is common to both
sets, therefore the sets are not mutually exclusive. content...
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Distributions of Random Variables

8.1 Random variables

A random variable (rv) is a function that assumes its values with a given probability
P. When one of the numbers that are observed (from instance from an experiment),
those numbers are referred as random variables. In this notes the notation for a random
variable is X. The set of all possible values of X is called range of X. Random variables
can be discrete or continuous. A discrete random variable (drv) comes from a countable
set of discrete values, while a continuous random variable (crv) can take any number
in a continuous sample space.

8.1.1 Discrete random variables

In many application in data analysis, the outcome of the experiment is numerical. A
random variable (r.v.) often denoted by capital letters like X,Y andZ is a numerical
value obtained from the experiment. Since the experiment can produce a variety of
outcomes usually we refer to single elements as x1, x2, x3, ..., xn which are outcomes of
the general random variable X.

X is a discrete random variable if the range of X is a countable set:

SX � �x1, x2, ..., xn� (8.1)

8.1.2 Continuos random variables

A continuos random variable is a random variable defined by a continuous set of
numbers, referred as an interval. The interval contains all of the real numbers between
two limits. For instance

�x1, x2� � �x¶x1 & x & x2� (8.2)

is a closed interval defined by all the real numbers between x1 and x2 including
both x1 and x2.

There are many variables measured through experiments that lead to a crv, such
as the arrival time of a particle, the voltage across a resistor, the photon reaching a
solar radiation sensor.

8.2 Distributions

As introduced in the previos chapter, a probability distribution is a mathematical
function that provides the probabilities of occurrence of different possible outcomes of
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a random phenomena. The sample space, often denoted by Ω is the set of all possible
outcomes of a random phenomenon being observed; it may be any set of real numbers,
a set of vectors, a set of arbitrary non-numerical values. Many distributions have been
derived describing different phenomena. For instance for some processes or phenom-
ena, experiments provided information to apply a specific distribution. There are many
distributions, the most common ones are: Uniform, Bernoulli, Binomial, Geometric,
Hypergeometric, Exponential, Poisson, Weibull, Normal, Log-Normal, Chi�Squared,
Student’s t, Gamma and Beta. Clearly, some of them are strictly related both in terms
of mathematical form and applications such as the Normal, Log-Normal, Chi�Squared
and Student’s t. When studying a process and analyzing data it is important to ob-
serve the data and identify the most suitable distribution to be applied to derive
probabilities.

8.3 Uniform distribution

The uniform distribution is a distribution where equal probability is assigned to the
random variable, within a given interval. It is applied when there are no reason to think
that an occurence, an event would have higher probability to occur with respect to
another event for the same process. It is often used in random sampling, when numbers
should have the same probability, it is employed in finance and economics. In physics
the emission of radioactive particles is often described with uniform distributions.
Another example is the presence of a winning raffle ticket in a number N of tickets
sold to people. At the beginning of the raffle the probability is the same of each ticket
to be the winning one.

The uniform distribution can be continuous and discrete. The continuous uniform
distribution the PDF is constant over the possible values of x.

x

f(
x
)

a b

Area = 1

1/(b-a)

Median

Mean

Fig. 8.1 Uniform distribution

The minimum value and maximum value that x can take are called a and b respec-
tively (Fig.8.3). Any intervals in the interval �a, b� or �a, b� are equally likely to occur.
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Since the geometry is a rectangle, and the Area is equal to 1, it leads to:

Area � �b � a�f�x� � 1 (8.3)

and

f�x� � 1

b � a
(8.4)

Formally:

f�x� � w 1
b�a

for a & x & b

0 elsewhere

The median of the distribution is the value that splits the distribution in two equal
parts and, since it is a symmetric distribution, the mean and median are equal and it
is the midpoint between a and b. So the median is:

median �
a � b

2
(8.5)

and so is the mean

µ �
a � b

2
(8.6)

The variance is

σ
2
�

1

12
�b � a�2 (8.7)

Usually for continuous distribution, finding the area under the curve requires inte-
gration. They can be analytical or numerical integrations, depending upon the math-
ematical form of the distribution, that may have an analytical integral or not.

For the uniform distribution the areas are simply rectangles. Suppose that the
distribution has a value of a = 20 and b= 25, f�x� is therefore f�x� � 1

25�20
= 0.2 for

values of 20 & x & 25. The area is therefore:

Area �
1

5
�25 � 20� � 1 (8.8)

What is the probability that P �x % 23�. Probabilities are areas under the curve,
therefore the area to the right of 23 must be found:

P�x % 23� � base � height � �25 � 23�1
5
� 0.4 (8.9)

Using R it is easy to generate and analyse the uniform distribution. In the example
below, where x values are generated within the interval 15 to 30. A random generation
of uniform numbers is performed. Then the PDF and CDF of the distribution are
computed and plotted.
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x <- seq(15, 30, by = 0.01)

xx <- runif(x)

plot(xx)

dx <- dunif(x, min = 20, max = 25, log = FALSE)

px <- punif(x, min = 20, max = 25, lower.tail = TRUE, log.p = FALSE)

plot(x,dx,type="l",ylab=("f(x)"))

plot(x,px,type="l",ylab=("CDF"))

hist(xx,prob=T)

15 20 25 30

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

P
D
F

15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

C
D
F

Fig. 8.2 PDF and CDF for the uniform distribution generated with R

8.4 Bernoulli distribution

Let us consider the flipping of a coin one time. What is the distribution of the number
of heads in a single toss. This example has a Bernoulli distribution. We assume to have
a single trail where each can have two possible mutually exclusive outcomes:

wa P(success) = p

b P(failure) = 1 - p
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We define the random variable X � 1 if a success occurs and X � 0 if a failure
occurs. Then X has a Bernoulli distribution:

P�X � x� � p
x�1 � p�1�x (8.10)

for x � 0 or x � 1. It is also called probability mass function of the Bernoulli distri-
bution. Now writing this distribution for the two individual values. For x � 1:

P�X � x� � p
1�1 � p�1�1 � p (8.11)

and for x � 0

P�X � x� � p
0�1 � p�1�0 � 1 � p (8.12)

which is the same of what was written above, for success and failure, but with the
formulation of eq. 8.10 it is written in one single equation. The mean of a Bernoulli
random variable is

µ � p (8.13)

and the variance is

σ
2
� p�1 � p� (8.14)

In Italy there are 403,454 medical doctors over a population of 59,55 milion people. The
ratio is 0.006, therefore there are about 6 medical doctors every 1000 Italians. There is
therefore 1 medical doctor every 166.6. Let us approximate to 160. One Italian citizen
is selected, what is the probability that he or she is a medical doctor ? and what is
the distribution of the number of medical doctors ? We have one single trail. So the
condition for the Bernoulli distributions are met so the number of medical doctor will
have a Bernoulli distribution with parameter p and it is simply p � 1

160
. If the variable

X is the number of medical doctor for a sample of size one, then the probability is:

P�X � x� � � 1

160
�x�1 � 1

160
�1�x (8.15)

and this is for x � 0 or x � 1 since the person will a medical doctor or not.
Substituting these values will lead to, for x � 1:

P�X � x� � � 1

160
�1�1 � 1

160
�1�1 � 1

160
(8.16)

and for x � 0

P�X � x� � � 1

160
�0�1 � 1

160
�1�0 � 159

160
(8.17)

So one may wonder why to make this calculation for something so simple, since we
knew that there was one person every 160. First the Bernoulli distribution is a concise
and mathematically precise description of the probability. Moreover, this distribution is
the base for other common distributions that are built from the Bernoulli distribution
and from the assumption of independent Bernoulli trials, such as the Binomial or the
geometric distribution.
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8.5 Binomial distribution

Let us consider n independent Bernoulli trials, where independent means that the
outcome of one trial does not affect the outcome of the following trials. As an example
we choose the outcome of getting heads from flipping a fair coin five times. Therefore
the r.v. X = number of heads from flipping a fair coin 5 times. The possible outcomes
are many, we could have THTHT,HHHTT,HHTTH and so forth. The probability of
success is denoted p ant it is constant for each experiment. It is important to remember
that the values n and p are known and constant and that each experiment has the
identical probability of any other.

The question is: what is the probability of success in n trials ? For instance, to
obtain 30 heads in 100 throws, P rX � ksuccess, n trialsx. If X is a discrete r.v. whose
field is r0, 1, 2, . . . , nx. We indicate the success with 1 and failure with 0. For instance
n � 10, k � 4: 1, 1, 0, 0, 0, 1, 0, 0, 1, 0. Defining with A the set of success and B the set
of failure, the probability of the previous outcome is given by the law of combined
probability for independent events:

P rA =Bx � P rAxP rAx. In general:
P r�Aix �4i P rAix P r1, 1, 0, 0, 0, 1, 0, 0, 1, 0x �
P r1x � P r1x ��� P r1x
Therefore 4i P rAix � pp�1� p��1� p��1� p�p�1� p��1� p�p�1� p� � p

4�1� p�10�4
The probability of the outcome of k success in n trials is:

p
k�1 � p�n�k.

How many of these sequences are possible, with n and k successes ? They are a number
equal to the many different ways of partitioning the n in different positions in the
sequence of k success and n � k failures. In other words the number of n objects that
are equal to eachother. The number of sequences is given by:

n!

k!�n � k�! (8.18)

Now, the computation of the outcome of number of heads (H) from flipping a coin five
times, is computed by using eqn.8.18, where from combinatory theory:

5
C0 �

n!

k!�n � k�! � 5!

0!�5 � 0�! � 5 � 4 � 3 � 2 � 1�1��5 � 4 � 3 � 2 � 1� � 120

120
� 1

5
C1 �

n!

k!�n � k�! � 5!

1!�5 � 1�! � 5 � 4 � 3 � 2 � 1�1��4 � 3 � 2 � 1� � 120

24
� 5

5
C2 �

n!

k!�n � k�! � 5!

2!�5 � 2�! � 5 � 4 � 3 � 2 � 1�2 � 1��3 � 2 � 1� � 120

12
� 10

5
C3 �

n!

k!�n � k�! � 5!

3!�5 � 3�! � 5 � 4 � 3 � 2 � 1�3 � 2 � 1��2 � 1� � 120

12
� 10

5
C4 �

n!

k!�n � k�! � 5!

4!�5 � 4�! � 5 � 4 � 3 � 2 � 1�4 � 3 � 2 � 1��1� � 120

24
� 5
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5
C5 �

n!

k!�n � k�! � 5!

4!�5 � 5�! � 5 � 4 � 3 � 2 � 1�5 � 4 � 3 � 2 � 1��1� � 120

120
� 1

Therefore the probabilities are:

P �x � 0� � 5
C0

32
�

1

32
� 0.031

P �x � 1� � 5
C1

32
�

5

32
� 0.156

P �x � 2� � 5
C2

32
�

10

32
� 0.312

P �x � 3� � 5
C3

32
�

10

32
� 0.312

P �x � 4� � 5
C4

32
�

5

32
� 0.156

P �x � 5� � 5
C5

32
�

1

32
� 0.031

The binomial r.v. B�k;n, p� represents the probability of k success in n indipendent
trials, each with a probability of success p. We can write:

B�k;n, p� � X1 �X2 ���Xn

where Xi � 1, if the i -th trial is successful, otherwise � 0. Since Xi � p and Xi �

p�1 � p�, it follows:
B � npÔ
np�1 � p� � B � p×

p�1 � p�
n

� N �0, 1�
In R the binomial distribution is implemented into the function rbinom(n, ns,

p). This function has three arguments: the number of random draws (n), the number
of coins being flipped on each draw (ns), and the probability of a heads (p) as the
outcome. With the function rbinom(n, ns, p), simulates 5 random flips of a single
coin using a bimodal distribution:

n<- 5

ns<- 1

p<- .5

y <- rbinom(n, ns, p)

y

The outcomes could be:
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0 1 0 0 1

1 0 0 0 0

1 0 1 0 1

...

where the head is 1 and the tail is 0. To estimate the exact probability density at
a given point, the function dbinom(n, ns, p) is used. The arguments here are the
density being estimated (1 head), the number of coins (5), and the probability of
producing a head (0.5).

n<- 1

ns<- 5

p<- .5

y <- dbinom(n, ns, p)

y

The results of this code is 0.15625, as expected. Replacing the value of n in the function
will produce the expected values of probabilities described above. To compute all the
values the number of successes are computed from 0 to 5:

n<- 0:5

ns<- 5

p<- .5

y <- dbinom(n, ns, p)

y

plot(type="h",n,y,xlab="Number of heads",ylab="P(X)")

The results are the probabilities as listed above.

[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

Figure 8.5 shows the probabilities of heads for trials of 5 throws.

8.6 Normal Distribution

Among the many distributions, the most common one is the Normal Distribution. It is
a symmetric, unimodal, bell curve. It is very common simply because many variables
tend to follow a normal distribution. For instance the heights of human adults follow
a normal distribution. The general symbolic form is:

N � �µ, σ� (8.19)

where µ is the population mean and σ is the population standard deviation.
The density curve is:

p�x� � 1

σ
Ó
2π

exp ��1

2
�x � µ

σ 	2� , �� $ x $� (8.20)

where µ and σ are the mean and the standard deviation of the random variable x with
density p �x� (Fig.8.6).
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Fig. 8.3 Probabilities of heads for trials of 5 throws.

0 5 10 15 20 25 30

0
.0
0

0
.0
5

0
.1
0

0
.1
5

x

p
(x
)

Fig. 8.4 Normal distribution

The bell curve becomes larger at increasing values of standard deviation as depicted
in Fig. 8.6. Since it is a density distribution, the area under the curve is always

Usually, the cumulative form of the Gaussian function, is obtained by integration
of eqn 8.20 with respect to x:

F �x� � 1

2
�1 � erf ��x � µ�

σ
Ó
2

�
 for �x % µ� (8.21)

F �x� � 1

2
�1 � erf ��x � µ�

σ
Ó
2

�
 for �x & µ� (8.22)
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Fig. 8.5 Normal distributions with µ � 2 and σ � 0.5, 1, 2 (continuos, interrupted lines and

points.)

where erf[ ] is the error function. For the computation of the error function a numerical
approximation from ?) can be used:

erf�x� � 1 � �0.3480242T � 0.0958T
2
� 0.7478556T

3� exp ��x2� (8.23)

where T � 1©�1 � 0.47047x�.
It is possible to generate random numbers having a normal distribution using the
instruction rnorm(). A normalized distribution having mean equal to zero (mean=0)
and standard deviation equal to one (sd=1) is obtained by specifying the values of
mean and standard deviation, as shown below:

random_numb_normal <- rnorm(1000,mean=0,sd=1)

plot(random_numb_normal)

Figure 8.6 depicts the random numbers, from index 1 to 1000 is:
The numbers can be visualized by using frequency classes.

values <- rnorm(1000, mean= 0, sd = 1)

hist(values, col = 'green', freq=F)

The graph simple displays the generated numbers from 1 to 1000. Although the
distribution is normal, it is not clear from a simple list of numbers. The distribution
appears normal when the numbers are plotted by interval of frequency classes. The
concept of frequency and classes is described in details in the next chapter. The plot
(Fig.8.6) of the distribution looks now more familiar:
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Fig. 8.6 Random numbers
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Fig. 8.7 Normal distribution of random numbers by classes

Note that the distribution is normalized with mean = 0 and standard deviation = 1.
The code below (also shown in Chapter 7) allows for plotting the PDF and the CDF
for the normal distribution.

# Create a sequence of numbers between -10 and 10 incrementing by 0.1.

x <- seq(-10, 10, by = .1)

# Choose the mean as 0 and standard deviation as 1.

y <- dnorm(x, mean = 0, sd = 1)

y_cum<-pnorm(x, mean = 0, sd = 1)

plot(x,y,type="l",col="blue",xlim = c(-5,5),ylab=("PDF"))
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plot(y_cum,type="l",col="green",ylab=("CDF"))

Figure 8.6 show the PDF and CDF for the normal distribution.
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Fig. 8.8 PDF and CDF for a the normal distribution.

8.6.1 Transformations

If the frequency distribution for a soil property follows a normal probability den-
sity function, its position and dispersion are easily and conveniently described by the
arithmetic mean and the variance. Probabilities of occurrence for various values of
the property are easily found. The most useful of the transformations for soil physical
properties is the log transform. The frequency distribution of the transformed data is
symmetric with a mean of:

�lnx� � 1
n= lnx (8.24)

and variance

σ
2
�

1

n � 1
=�lnxi � �lnx��2 (8.25)

8.6.2 Central limit theorem

The “central limit theorem” says that, under general conditions, the distribution of a
r.v., given by a summation of random variables, tends to be distributed as a normal
distribution by increasing the number of the additive elements. Be n independent
random variables rX1, X2, . . . , Xnx, all having the same distribution, with finite mean
µ and finite variance σ

2
. The central limit theorem says that, for n�� (n large):

X1 �X2 ���Xnº N �nµ,nσ2�
Note that this convergence is a convergence in distribution. Even if it is said that
the sequence of r.v. converges in a distribution, are the partition functions that are
converging, not the random variables.
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In the standardized form:

X1 �X2 ���Xn � nµ

σ
Ó
n

º N �0, 1�
the central limit theory is one of the most important theory in statistics, since it states
that regardless the shape of the distribution the sample means will normally distribute,
allowing for using normal distributions for inferential statistics even for nor�normal
distributions for the population.

8.7 t-student distribution

One of the most important test within the branch of inferential statistics is the Students
t�test. The Student’s t�test for two samples is used to test whether two groups (two
populations) are different in terms of a quantitative variable, based on the comparison
of two samples drawn from these two groups. A Student’s t�test for two samples
allows for determining whether the two populations from which two samples are drawn
are different. Here the t�student distribution is described, while in the section on
inferential statistics an example of application of a t�student test is presented.

The normalized Normal distribution is:

Z �
�X̄ � µ�
σ©Ón (8.26)

Examples in R were presented where a sample of the random variable was drawn
from the population. Commonly, the population standard deviation σ is not known,
so it is not possible to use the value σ in the formula, but instead the sample standard
deviation s is used:

Z �
�x̄ � µ�
s©Ón (8.27)

the sample standard deviation is not a fixed number but it has a statistical distribu-
tion that varies from sample to sample. Therefore it is defined a t�student distribution:

t �
�x̄ � µ�
s©Ón (8.28)

This distribution has a similar shape of the normal distribution but with greater
variance. It has (n � 1) degree of freedom. As the degree of freedom increases the
t-student will tend toward a normal distribution. The code below shows how the t-
student distribution approaches the normal distribution at increasing values of df.

Density, distribution function, quantile function and random generation for the t
distribution with df degrees of freedom is called with these instructions:

dt(x, df, ncp, log = FALSE)

pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)

rt(n, df, ncp)
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x <- seq(-4, 4, length=100)

mean<-mean(x)

sd<-sd(x)

sd

#Apply a normal distribution

y_norm<-dnorm(x,mean = 0, sd =1 )

mean

# Applying the dt() function

y_dt <- dt(x, df = 2)

y_dt_5df <- dt(x, df = 5)

y_dt_10df <- dt(x, df = 10)

y_dt_30df <- dt(x, df = 30)

# Plotting

plot(x,y_dt, type = "l", ylab =("PDF"),las=1,ylim=c(0,0.5),col="yellow")

lines(x,y_dt_5df,col="red")

lines(x,y_dt_10df,col="blue")

lines(x,y_dt_30df,col="green")

lines(x,y_norm,col="black",lty=2, lwd=3)

The figure below shows the t�student distribution for different degrees of freedom
(2,5,10 and 30). The normalized normal distribution is also depicted in the graph
(dotted line). Note that above 30 degrees of freedom the t�student distribution ap-
proaches the normal distribution.
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Fig. 8.9 t�student distribution for 2 (orange line),5 (red line), 10 (blue line) and 30 (green

line) degrees of freedom. The normal distribution is plotted with black line.

8.8 Poisson distribution

The Poisson distribution is used when a counting process is analyzed.
A stocastic process rX�t�, t ) 0x is considered a counting process if the X�t�

represents the total number of counted events. With the notion “up to time t” it
means “before and at time t”. If the event comes exactly at time t, it is counted. This
a process with continuous time and with discrete states s � N .

The number of people who are entering into a store from the opening time until
10 AM is described as a counting process, but the number of people that are in the
store at 10 AM is not a counting process. A counting process may be the number of
births of a given animal until a given day, the number of songs written by a musician,
the number of car accidents, the number of phone calls arriving at an help�desk.

A counting process rX�t�, t ) 0x is defined by listing some properties:

1. rX�t�x ) 0.

2. rX�tx� it takes only integer values.

3. if s $ t then X�s� ( X�t�.
4. if s $ t then the difference X�t� �X�s� counts the number of events in the time

interval �s, t�.
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Therefore the differences X�t��X�s� are only non�negative, integer values. In partic-
ular if X�0� � 0, rX�t�x represents the number of counted events in the time interval�0, t�. These processes are called purely discontinuous. For the counted events, other
terms can be used such as “arrivals” or “emissions” from a source. The positive ran-
dom variables X�t� � X�s� ¾t, s are called increments of the process and they are
particularly important when they are indipendent and stationary.

A counting process has independent increments if the number of arrivals, real-
izations of the r.v. X�t� � X�s�, that are happening in any time interval �s, t� are
independent from the number of arrivals, realizations of the r.v. X�v��X�u�, occured
in any other time interval disjointed �u, v�, for instance in �0, s�. This definition means
that the random variables representing the number of arrivals in disjointed intervals
are indipendent. It is like the probability of n arrivals in �s, t� does not change even
though it is conditioned to the information about the arrivals in different time inter-
vals from �s, t�. This independence of increments is the analogue of the independence
of trials for the Bernoulli process. Process at independent increments could be the
number of customers entering a store or the songs written by a musician, but it is not
reasonable to apply it to the number of births. In this case if the number of birth is
large enough it is not plausible that the future birth will not depend upon the births
occuredbefore.

A counting process has stationary increments or homogeneous increments, if the
number of arrivals in any time interval �t, t � ∆t� depends only upon the length of
the time interval ∆t, but not on t, therefore on the position of the interval on the
time axis. In other words, a r.v. “number of arrivals” in the interval ∆t has the same
distribution of the variable “number of arrivals” in t �∆t.

Hence, the stationarity property of the increments is written:

X�z � t �∆t� �X�z � t� � X�t �∆t� �X�t�
Or, given ∆t � t � s, with t % s:

X�t � z� �X�s � z� � X�t� �X�s�, ¾z % 0, ¾t % s (8.29)

This means that arrivals are “ equally likely ” for every t. This property is the contin-
uous analogue of the constancy of the probability of success p in a Bernoulli process.
In the shop example, that’s not reasonable assume stationarity, as there are almost
certainly intervals with greater influx of customers. Also in the other examples, the pro-
cesses that describe them are not stationary. For births, stationarity would be plausible
if the population of individuals remained constant; for the musician, his inspiration
is likely to vary over time. Finally, note that the fact that the process has stationary
increments does not mean that it is stationary, as exemplified by the Poisson process.

The counting process rX�t�x is a Poisson process if:

a) X�0� � 0. In other words, the origin of the times arises at the moment that the
count is started .

b) The process has independent increments.



Poisson distribution 91

c) The probability of n of arrivals in a range of finite length ∆t is given by the
random variable X�∆t� with so-called Poisson distribution:

P rX�∆t� � nx � �λ∆t�n
n!

e
�λ∆t

, n � 0, 1, . . . (8.30)

Therefore, we have an event that occurs randomly, but the probability of occuring
over a certain time interval (∆ t) is constant. For instance the event can occur 4 time
per century or 500 times per second. Therefore λ � 4

century
or λ � 500

second
.

Since P is constant it does not matter how many times the event has occured
before, so the events are independent or uncorrelated, as explained above. Now we
want to know the probability that the event will occurs m times into a time interval.

So for an event that happens with λ � 4
century

, we may want to know the probability

that it will happen once, twice or not at all in the next decade.

The Poisson distribution defines the probability that the random variable X takes
the values n. P rX � nx can take any non�negative whole number value. So the value
n is the number of time that the variable will take the value (the event happens) in
the time interval ∆ t and P rX�∆t� � nx is the probability that the event will occur
in that interval of time.

The mean of the distribution is µ � λ and the variance is also equal to lambda
σ
2
� λ. Overall, the distribution has only one parameter λ and describes the number

of events that occur in a fixes time intervals.

Since the time interval is a constant often the distribution is written as:

P rX � nx � λ
n
1

n!
e
�λ1 , n � 0, 1, . . . (8.31)

by defining λ1 � λ∆t
The mean does not have to be an integer value.
The Poisson distribution has different shape depending on the values of λ.
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Fig. 8.10 Poisson distribution for λ=1, 2, 3 and 4 from the upper left toward the lower right.

8.8.1 Examples

One nanogram of Plutonium will have an average of 0.31 radioactive decays / 1 sec.
We monitor the sample for 10 seconds, what is the probability to one decay occurs
during this time ?

Here λ1 � 0.31 � 10t

λ1 � λ∆t � 0.31 � 10 � 3.1 (8.32)

therefore X has a Poisson distribution with λ � 4.6 and with probability:

P rn, 3.1x � 3.1
n
e
�3.1

n!
(8.33)

It is possible to make a table with n � 1 to 7.
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Table 8.1 Poisson probability

n P rn, 3.1x %
0 4.5
1 14
2 21.6
3 22.4
4 17.3
5 10.7
6 5.6
7 2.5

Note that the probability peaks at n � 3, which is very close to λ1 � 3.1.

#POISSON

## lambda is known

set.seed(2)

deltat<- 3600 # 1 hr=3600 sec

lambda<- 0.0028

ev<- 0 # initial time t=0

t<- 0

while (t<deltat) {

t<- t + rexp(1,lambda)

ev<- c(ev,t) # adding the t values to zero; as well as ev<-c(0,t)

print(ev) # print to see who events develop over time

} # end while

ev # arrival time are written

length(ev) # (count ev=0

plot(ev,0:(length(ev)-1),type="s",xlab="tempo (s)",ylab="n. arrival(t)")

# s is for "stair step" it makes steps

abline(v=deltat,lty=3)

# when the system changes state (new arrival) it takes a step on the graph;

# the time between one finish and the next is given by the exponential

##### The average number of arrivals (snow) in deltat is known

# practically like the first program, here snow lambda is calculated

set.seed(2)

deltat<- 3600

neventi<- 10

lambda<- neventi/deltat

lambda

1/lambda

ev<- 0

t<- 0
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while(t<deltat){

t<- t + rexp(1,lambda)

ev <- c(ev,t)

}

ev

length(ev)

plot(ev,0:(length(ev)-1),type="s",xlab="tempo (s)",ylab="no. arrivi(t)")

abline(v=deltat,lty=3)
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Descriptive statistics

9.1 Frequencies

An important representation of data is through the use of frequency histograms or
relative frequency histograms. Both of these graphical techniques are applicable only
to quantitative data. Before plotting the resultsm, data must be organized. There are
different possibilities:

9.1.1 Absolute Frequency

The absolute frequency is the number of times a value appears. It is represented as

0 & ni & n
k

=
i�1

ni � n

where the subscript represents each of the values. So if a value or precipitation (50
mm) appears 4 times, its absolute frequency is 4.

9.1.2 Relative frequency

The relative frequency is the number of times a value appears, divided by the total
number of data. It is obtained by dividing the absolute frequency of a certain value
by the total number of data.

fi � ni©n
0 & fi & 1

k

=
i�1

fi � 1

9.1.3 Percentual frequency

The percentual frequency is the number of times a value appears, divided by the total
number of data and multiplied by 100.

pi � ni©n � 100

0 & pi & 100
k

=
i�1

pi � 100

9.1.4 Example

We have n � 25 statistical units (people), with the character X = drink (what they
drink with pizza). There are 4 modalities, modality = 4 (beer, water, Coke and wine)
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The qualitative data are assigned a code, and identifier 1=beer, 2 = water, 3 = Coke
and 4 = wine. The data are for 25 customers: 3, 4, 1, 1, 3, 4, 3, 3, 1, 3, 2, 1, 2, 1, 2, 3,
2, 3, 1, 1, 1, 1, 4, 3, 1.

Table 9.1 Distribution of the character X

Modality Absolute f. Relative f. Percentual f.
beer 10 0.40 40
water 4 0.16 16
coke 8 0.32 32
wine 3 0.12 12
Sum 25 1 100

The data organized in the table can be used to construct a frequency histogram or
a relative frequency histogram. In this case on the x-axis, the modality is represented
since it is a qualitative value (beer, wine, etc.). In the next example, on the x-axis will
be represented classes or intervals, in case a quantitative variable is used.

It is possible to plot these frequencies with, on the left, absolute frequencies and
on the right, relative frequencies.
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Fig. 9.1 Left: Absolute frequencies; Right: Relative frequencies

As discussed above the first thing to do is to plot the data. Some data visualizations
are better than others. There are many different options. It is possible to use dot
graphs, such the one below.
Another possibility are pie charts. Pie charts are a very bad way of displaying infor-
mation. The eye is good at judging linear measures and bad at judging relative areas.
A bar chart or dot chart is a preferable way of displaying this type of data.

The size of acute angles tends to be underestimated, and the size of obtuse angles
overestimated. This is one reason pie charts are usually a bad idea. We also misjudge
areas poorly. We have known for a long time that area-based comparisons of quantities
are easily misinterpreted or exaggerated.
Cleveland (1985): “Data that can be shown by pie charts always can be shown by
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a dot chart. This means that judgements of position along a common scale can be
made instead of the less accurate angle judgements.” This statement is based on the
empirical investigations of Cleveland and McGill as well as investigations by perceptual
psychologists.

The computation of these frequencies can be performed with R. First a vector Vtr1
is created to create an index of the 25 measurements.

> Vtr1 <- c((1:25))

Then, a second vector Vtr2 stores the recorded values:

> Vtr2<-c(3, 4, 1, 1, 3, 4, 3, 3, 1, 3, 2, 1, 2,

1, 2, 3, 2, 3, 1, 1, 1, 1, 4, 3, 1)

Next, a data.frame named drink is created from the two vectors

> drink=data.frame(Vtr1,Vtr2)
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If the drink data.frame is called it returns:

drink

Vtr1 Vtr2

1 1 3

2 2 4

3 3 1

4 4 1

5 5 3

6 6 4

7 7 3

8 8 3

9 9 1

10 10 3

11 11 2

12 12 1

13 13 2

14 14 1

15 15 2

16 16 3

17 17 2

18 18 3

19 19 1

20 20 1

21 21 1

22 22 1

23 23 4

24 24 3

25 25 1

The drinks (1=beer, 2 = water, 3 = Coke, 4 = wine) are four types. So we can define
it as factors, by calling it drink_type:

drink_type=factor(Vtr2)

drink_type

[1] 3 4 1 1 3 4 3 3 1 3 2 1 2 1 2 3 2 3 1 1 1 1 4 3 1

Levels: 1 2 3 4

When the command drink_type is types on the console, it returns the list and the four
levels. To get a frequency table of a categorical variable in R, the count() function in
the plyr package is used. The package plyr is installed

install.packages('plyr')

The count() function can then be used:

> library(plyr)
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> categ_count<- count(drink_type)

> categ_count

x freq

1 1 10

2 2 4

3 3 8

4 4 3

The function returns the number of each categorical types, (10 people ordered beer, 4
ordered water, 8 ordered Coke and 3 ordered wine). This is defined above as absolute
frequency and a variable categ_count was created to save this numbers.

> str(categ_count)

'data.frame': 4 obs. of 2 variables:

$ x : Factor w/ 4 levels "1","2","3","4": 1 2 3 4

$ freq: int 10 4 8 3

Obviously, the total number is 25, one unit for each customer. Now the relative fre-
quency is each value of absolute frequency divided by the total number of units, as
shown above.

> rel_freq <- categ_count$freq /25

> rel_freq

[1] 0.40 0.16 0.32 0.12

Note that, since categ_count is a data.frame and not a single variable, only the
property $freq was invoked to be then divided by 25. This operation returned the
relative frequency.

> perc_freq <- (categ_count$freq /25)*100

> perc_freq

[1] 40 16 32 12

Finally, the percentual frequency can be computed.
To plot the results of the frequency distribution, ggplot allows for providing the

dataframe and the variable. It automatically recognize the four different classes and
plot a bar graph.

ggplot(data.frame(drink_type), aes(x=Vtr2)) +

+ geom_bar()

The output of this instruction is the figure below:
The figure generated by ggplot can be saved as encapsulated post script (.eps),

which is a good format to manupulating and printing high quality figures.
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Fig. 9.2 Left: Absolute frequencies plotted with ggplot

9.2 Classes

Now, another example will be shown to introduce the concept of classes. The data
shown in the table below describes cumulative annual precipitation (in inches) from
1873 to 1978. (Data are taken from B. Efron, R.J. Tibshirani, An Introduction to the
Bootstrap, Chapman & Hall, New York,1993).

The data can be displayed with histograms:
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1 inch = 25.4 mm

Fig. 9.3 Annual precipitation in Nevada City from 1873 to 1978
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Table 9.2 Annual precipitation (inches) at Nevada City from 1873 to 1978

year inch year inch year inch year inch
1873 80 1900 40 1927 43 1954 54
1874 40 1901 56 1928 62 1955 52
1875 65 1902 55 1929 44 1956 40
1876 46 1903 46 1930 33 1957 77
1877 68 1904 46 1931 45 1958 52
1878 32 1905 72 1932 30 1959 75
1879 58 1906 50 1933 53 1960 42
1880 60 1907 68 1934 32 1961 43
1881 61 1908 71 1935 38 1962 39
1882 60 1909 37 1936 56 1963 54
1883 45 1910 64 1937 63 1964 70
1884 48 1911 46 1938 52 1965 40
1885 63 1912 69 1939 79 1966 73
1886 44 1913 31 1940 30 1967 41
1887 66 1914 33 1941 62 1968 75
1888 39 1915 61 1942 75 1969 43
1889 35 1916 56 1943 70 1970 80
1890 44 1917 55 1944 60 1971 60
1891 104 1918 40 1945 34 1972 59
1892 36 1919 37 1946 54 1973 41
1893 45 1920 40 1947 51 1974 67
1894 69 1921 34 1948 35 1975 83
1895 50 1922 60 1949 53 1976 56
1896 72 1923 54 1950 44 1977 29
1897 57 1924 52 1951 53 1978 21
1898 53 1925 20 1952 73
1899 30 1926 49 1953 80

or with points:
A useful method to describe data is to create classes. Classes are simply intervals,

classes of ranges) of the variable. For instance in the Table 9.3, classes of 200 mm were
created.

Table 9.3 Distribution of frequencies of “Precipitation in Nevada City”

Precipitation (mm) Absolute freq. Relative freq. Percentual freq.�200, 400� 0 0 0�400, 600� 2 0.019 1.9�600, 800� 5 0.047 4.7�800, 1000� 14 0.132 13.2�1000, 1200� 23 0.217 21.7�1200, 1400� 19 0.179 17.9�1400, 1600� 16 0.151 15.1�1600, 1800� 12 0.113 11.3�1800, 2000� 9 0.085 8.5�2000, 2200� 5 0.047 4.7�2200, 2400� 0 0 0�2400, 2600� 0 0 0�2600, 2800� 1 0.009 0.9
Sum 106 1 100
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Fig. 9.4 Annual precipitation in Nevada City from 1873 to 1978

In this case, to perform this operation with R, the data file must be imported. This
instruction has been shown in the Chapter Data Management. In this case the file is
called Nevada_prec.dat and the separator is a tab.

#CODE Ch9_1.R

Nevada_prec <- read.table("C:/Users/marco.bittelli.PERSONALE/Documents

/Didattica/R_class_2/exercises/descriptive_stat/Nevada_prec.dat",

sep = "", check.names = FALSE, header = T, na.strings = c("NA", "NAN"))

The instruction read.table reads a file in table format and creates a data frame
from it, with cases corresponding to lines and variables to fields in the file. Now the
data in the second column (annual cumulative precipitation) should be cumulated and
classified. Before performing this operation, the data are transformed into [mm].

Nevada_prec$Prec_mm = Nevada_prec$Prec * 25.4

Here a new variable Prec_mm has been created. This can be inquired with the instruc-
tion str().

str(Nevada_prec)

'data.frame': 106 obs. of 3 variables:

$ Year : int 1873 1874 1875 1876 1877 1878 ...

$ Prec : int 80 40 65 46 68 32 58 60 61 60 ...

$ Prec_mm: num 2032 1016 1651 1168 1727 ...
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Data can be plotted in any moment, with a simple instruction like

> plot(Nevada_prec$Prec_mm)

It is possible to collect data into classes, of type x1 â xi�1 or x1 à xi�1, in case it
is preferred to include the lower limit instead of the upper limit by specifying right=

FALSE as an additional argument of the function.

classes<-table(cut(Nevada_prec$Prec_mm, breaks=c(0,200,400,600,800,1000,

1200,1400,1600,1800,2000,2200,2400,2600,2800)),right=TRUE )

The output of this statement is

> classes

(0,200] (200,400] (400,600] (600,800] ...

0 0 2 5 ...

which are the number of events belonging to the different classes. Also notice that R
printed the upper value as a close interval as specified. Note that classes are obtained
if they start from zero.

There is another method to obtain classes, by using the function hist():

histogram=hist(Nevada_prec$Prec_mm, c(0,200,400,600,800,1000,

1200,1400,1600,1800,2000,2200,2400,2600,2800),plot=TRUE)

The structure of the variable is then:

str(histogram)

List of 6

$ breaks : num [1:15] 0 200 400 600 800 1000 1200 1400 1600 1800 ...

$ counts : int [1:14] 0 0 2 5 14 23 19 16 12 9 ...

$ density : num [1:14] 0.00 0.00 9.43e-05 2.36e-04 6.60e-04 ...

$ mids : num [1:14] 100 300 500 700 900 1100 1300 1500 1700 1900 ...

$ xname : chr "Nevada_prec$Prec_mm"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

where the breaks are specified, then the number of samples counted within each class,
the density, etc.

The classification by classes is useful to understand the frequency of given events.
In the graph below, the occurrence of years with precipitation comprised between 400
and 600 mm.
Often it is useful to normalize the distribution to obtain a better representation of the
occurrence of events.

9.2.1 Tabular and Graphical representation

The values for the cumulative frequencies are presented in the table below
A very useful representation of the cumulative frequencies is the use of cumulative

graphs. How many units of the ensemble have a value smaller than x
�

? In the 20%



104 Descriptive statistics

relative frequency= number of years/106
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Table 9.4 Distribution of frequencies for “precipitation at Nevada City”

precipitazioni (mm) ni Ni Fi Pi�200, 400� 0 0 0 0�400, 600� 2 2 � 0 � 2 0.02 1.89�600, 800� 5 2 � 5 � 7 0.07 6.61�800, 1000� 14 7 � 14 � 21 0.20 19.82�1000, 1200� 23 21 � 23 � 44 0.42 41.51�1200, 1400� 19 44 � 19 � 63 0.59 59.43�1400, 1600� 16 63 � 16 � 79 0.75 74.53�1600, 1800� 12 79 � 12 � 91 0.86 85.85�1800, 2000� 9 91 � 9 � 100 0.94 94.34�2000, 2200� 5 100 � 5 � 105 0.99 99.06�2200, 2400� 0 105 � 0 � 105 0.99 99.06�2400, 2600� 0 105 � 0 � 105 0.99 99.06�2600, 2800� 1 105 � 1 � 106 1 100
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(19.8%) of the years there are precipitation less than 1000 [mm].In the 6% of the years
precipitation are not less than 2000 mm. For 94.34% of the years, precipitation are $
di 2000 mm, therefore ' 2000 mm: 100 � 94.34 � 6). In the figure below, cumulative
frequencies are plotted:
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Fig. 9.5 Absolute (left) and relative (right) cumulative precipitation at the Nevada city ex-

perimental station (Nevada, USA).



106 Descriptive statistics

9.3 Cumulative curves and frequencies

A cumulative curve is often important to understand the behaviour of a variable. In
this example, daily precipitation data collected in the Emilia Romagna region (Italy)
from 1961 to 2018, are used (?). The original data set is available at the Eraclito
Project website.

As described above data can be represented using frequencies distribution and
classes to obtain a first idea at the distribution. A very useful representation is a
cumulative curve, frequency and distribution. For instance, cumulative precipitation
curves as function of time, provide an idea of the seasons where precipitation occurs,
as well as the total amount of precipitation over a given period. For instance, if the
cumulative curve is steep in the period March�June and Sept�December, it means
that a large amount of precipitation occurs in the spring and fall. This is typical of
Mediterranean climates. On the other hand, in tropical areas large amount of pre-
cipitation occurs in the summer months due to the Monsoon, determining a steep
cumulative curve during summer.

9.3.1 Absolute Cumulative Frequency

The absolute cumulative frequency of a mode is

Ni � n1 � n2 ��� ni

is given by the summation of the individual data. The code below shows how to com-
pute and plot a cumulative curve for data from the experimental station of Cadriano
(Bologna, Italy) for the year 1961. The code below reads the data from an excel file. It
parse the date value as a date format and define variables to select the time period to
use to compute the cumulative curve. A while loop is written to loop over the period
and compute the cumulative curve.

https://arpaeprv.datamb.it/dataset/erg5-eraclito
https://arpaeprv.datamb.it/dataset/erg5-eraclito
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#CODE Ch9_2.R

library(xts) ### provides functionality for working with time series

library(lubridate) ### manage dates

library(dplyr)

library(readxl) ### import excel file

#The excel file Prec_ER_daily.xlsx is opened, the structure of the

#newly created dataframe is analysed and the data are visualized.

setwd("~/Didattica/R_class_4/exercises/Ch9_statistical_inference")

Prec_ER_daily <- read_excel("Prec_ER_daily.xlsx")

# Only data from the Cadriano station are analyzed

Prec_ER_daily_cadriano <- Prec_ER_daily[,c("date","cadriano")]

prec_cadriano<-Prec_ER_daily_cadriano$cadriano

str(Prec_ER_daily_cadriano)

#Daily cumulative curve

date<-as.Date(Prec_ER_daily_cadriano$date)

start <- date[1]

end <- date[365]

start

end

theDate

as.Date(theDate)

theDate<-start

theDate

vec_date<-vector()

precip<-vector()

cumprec_vec<-vector()

prec_daily<-0

cumprec<-0

i<-1

while (theDate <= end){

vec_date[i]<-theDate

prec_daily=prec_cadriano[i]

cumprec<-cumprec + prec_cadriano[i]

cumprec_vec[i]<-cumprec

output<-c(i,prec_daily,cumprec)

print(output)

theDate <-theDate + days(1)

i<-i+1

}
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#plotting

plot(as.Date(vec_date),cumprec_vec,type="l",xlab="Time [day]"

,ylab="Cumulative precipitation [mm]")
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Figure 9.6 depicts cumulative precipitation for the Cadriano experimental station. As
described above, in the year 1961, about 200 mm of precipitation occurred between
January�March, about 400 mm in the period April�October and 600 mm in the period
October�January. Clearly, there is variability among different years, and estimators
must be used to derive more detailed information.
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Fig. 9.6 Cumulative precipitation at the Cadriano (Bologna, Italy) experimental station for

the year 1961.

9.3.2 Relative Cumulative Frequency

The data above are plotted as absolute values. Another useful way of plotting these
data is to use a relative cumulative curve. The relative cumulative frequency of a mode
is

Fi � f1 � f2 ��� fi
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#CODE Ch9_9_2.R

library(xts) ### provides functionality for working with time series

library(lubridate) ### manage dates

library(dplyr)

library(readxl) ### import excel file

#The excel file Prec_ER_daily.xlsx is opened, the structure of the

#newly created dataframe is analysed and the data are visualized.

setwd("~/Didattica/R_class_4/exercises/Ch9_statistical_inference")

Prec_ER_daily <- read_excel("OpenDataFiles/data/Prec_ER_daily.xlsx")

# Only data from the Cadriano station are analyzed

Prec_ER_daily_cadriano <- Prec_ER_daily[,c("date","cadriano")]

prec_cadriano<-Prec_ER_daily_cadriano$cadriano

str(Prec_ER_daily_cadriano)

#Daily cumulative curve

max_prec_value<-sum(Prec_ER_daily_cadriano$cadriano[1:365])

date<-as.Date(Prec_ER_daily_cadriano$date)

start <- date[1]

end <- date[365]

start

end

theDate

as.Date(theDate)

theDate<-start

theDate

vec_date<-vector()

precip<-vector()

prec_daily<-0

cumprec<-0

cumprecrel<-0

cumprec_vec<-vector()

cumprec_vec_rel<-vector()

i<-1

while (theDate <= end){

vec_date[i]<-theDate

prec_daily=prec_cadriano[i]

cumprec<-cumprec + prec_cadriano[i]

cumprec_vec[i]<-cumprec

cumprecrel<-cumprec/max_prec_value

cumprec_vec_rel[i]<-cumprecrel

output<-c(i,prec_daily,cumprecrel)
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print(output)

theDate <-theDate + days(1)

i<-i+1

}

#plotting

plot(as.Date(vec_date),cumprec_vec_rel,type="l",

xlab="Time [day]",ylab="Cumulative precipitation [mm]")

Figure 9.7 depicts relative cumulative precipitation for the Cadriano experimental
station.
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Fig. 9.7 Relative cumulative precipitation at the Cadriano (Bologna, Italy) experimental sta-

tion for the year 1961.
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9.3.3 Percentual Cumulative Frequency

The percentual cumulative frequency of a mode is

Pi � p1 � p2 ��� pi

where the data plotted above are expressed as percentage instead of fraction.

9.4 Measures of Central Tendency

The simplest statistical inference problem is Point estimation, where a single value
(statistic) from the sample data to estimate a population parameter.

In general, define θ as a parameter of the population described by random variables
X. X is unknown (the distribution is unknown), and θ is unknown. The quantity θ is
called parameter (of interest) and it is a constant of the population. θ is a measure of
the distribution of one or more character of the population, for instance the mean µ
or the variance σ

2
.

9.4.1 Means

The arithmetic mean is defined as the sum of the measurements divided by the total
number of measurements. Usually, the population mean is denoted by the greek letter µ,
while the sample mean is denoted by the symbol x̄. The population mean is computed
over the complete set of measurements, while the sample mean is computed over a
subset sample of the measurements.

x̄ �
<i xi

n (9.1)

where x̄ is the arithmetic mean, xi is each individual measurement and n is the total
number of measurements. In the example below, the vector x is defined, containing a
number n of measurements and to the variable am (which stands for arithmetic mean)
is assigned the output of the function mean(x). The function mean() is an internal
function of R, that computes the arithmetic mean. Note that the total number of
elements (n) is read by the function as elements of the vectors. Finally, the result is
printed on screen.

> x<- c(5.24, 5.55, 4.69, 4.39, 6.87, 5.15 ,

4.61, 5.20, 5.49, 4.81,2.74, 3.50, 5.19, 5.40,

3.81, 6.49, 6.34, 4.45, 5.10, 3.17)

> am<- mean(x)

> am

[1] 4.9095

>

Note that if the data have no values (NA), it must be specified in the mean as

> x<- c(5.24, 5.55, 4.69, 4.39, 6.87, 5.15 ,

4.61, 5.20, NA, 4.81,2.74, 3.50, 5.19, 5.40,

3.81, 6.49, 6.34, 4.45, NA, 3.17)
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> am<- mean(x,na.rm=TRUE)

> am

[1] 4.9095

>

It means that the NA (not available data) are removed from the computation of
the mean. This must be used also for other parameters like variance and standard
deviation.

There are other means that can be used. Important ones are the geometric, the
harmonic and the logarithmic means. The geometric mean is a mean or average, which
indicates the central tendency or typical value of a set of numbers by using the product
of their values:

� n

5
i�1

xn�1©n � n
Ó
x1x2xn (9.2)

This mean is used when the elements of the sample ranges several orders of magnitude
and the arithmetic mean is not a representative value of central tendency. If we have
two properties, the first one takes bigger numbers (from 300 to 450), while the second
takes small numbers (from 6 to 3). In the first case it is an increase in 50%, while in
the second case it is a decrease in 50%.

With the use of an arithmetic mean, the first one has a much higher weight, with
the mean going from 153 to 227, because the first number is increasing but the second
number, although it is decreasing, has little effect.

> x<-c(300,6)

> y<-c(450,3)

> mean(x)

[1] 153

> mean(y)

[1] 226.5

With the geometric mean the second variable is weighted more heavily, with the aver-
age going from 42.4 to 36.7.

> library(EnvStats)

> x<-c(300,6)

> y<-c(450,3)

> geoMean(x)

[1] 42.42

> geoMean(y)

[1] 36.74

In general the geometric mean is a more accurate estimator when the progression is
multiplicative instead of additive. A geometrical analogy could be drawn if we plot
the numbers on a linear scale for values that are close, and on a exponential curve. In
the second case the geometric mean will return a more accurate representation of the
distribution of numbers.



114 Descriptive statistics

Another useful mean is the harmonic mean:

H �
n

1
x1
�

1
x2
�

1
xn

� �<n
i�1 x

�1
i

n ��1 (9.3)

Since the harmonic mean is based on reciprocal of numbers, it is useful when dealing
with ratios and relationship among ratios. Other measures of position are the median
and the mode.

The median is the value separating the higher half from the lower half of a data
sample. It is the value in the middle of the distribution. So for odd number of elements
it is (1,3,4,6,8,9,11). For even number of elements, it is the mean between the two
middle number(1,3,4,6,8,9,11,13), therefore 6 � 8©2 � 7. Therefore the median value
is the central value, which is the value having half the observations smaller and half
larger than it.

The mode is the value of y at which the frequency distribution is maximum. For
symmetrical distributions, the median, mean and mode coincide.

The means are also referred to each class.

9.4.2 Means for classes

The arithmetic mean is a quantitative property that can be subdivided in classes:

x̄ � �1©n� N

=
i�1

cini (9.4)

where ci is the central value of the i-th class and ni is the absolute frequency. If ci � x̄i,
there are no approximations.

An example is presented, with the following classes: �0, 5�, �5, 10�, �10, 15�, therefore
with N � 3. The absolute frequencies are ni: 3, 5, 2. The central values are �5� 0�©2 �
2.5, �5 � 10�©2 � 7.5, �10 � 15�©2 � 12.5. The mean is � ��3 � 2.5� � �5 � 7.5� � �2 �
12.5��©�3� 5� 2� � 7. Given n data in N classes, of numerosity n1, . . . , nN ; xij , with
i-th data of the j-th class.

The mean of the j-th class is:

x̄j � �1©nj� nj

=
i�1

xij �j � 1, . . . , N� (9.5)

The mean of the n data is:

x̄ �
1
n

N

=
j�1

nj

=
i�1

xij �
1
n

N

=
j�1

nj x̄j �

N

=
j�1

fj x̄j

The difference (residuals) from the mean is xi � x̄, the sum of the residuals <n
i�1�xi �

x̄� � 0 and <n
i�1�xi � a�2 � minimum for a � x̄ namely, the mean is the value that is

closer to all the observations.
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9.4.3 Median

9.4.4 Mode

9.5 Measures of Variability

It is important to use indicators of variability in a distribution of data. The simplest
but useful measurement is the range, which defines the interval between the minimum
and maximum value of the distribution. Many different measures can be obtained
by measuring the deviations y � ȳ. The first that would come to mind is the mean
deviation. However, if deviations have opposite signs, the total mean deviation could
be zero. Therefore, a possibility is to ignore the minus sign and compute the absolute
values. However, a more easily interpreted function of the deviations is the variance,
which is the sum of the squared deviations of the measurements from their mean.

s
2
�
<i�xi � x̄�2

n � 1
(9.6)

Also for the measures of variability, different symbols are used, where s
2
is the sample

variance and σ
2
is the population variance. The use of �n�1� is not arbitrary, since it

makes an unbiased estimator of the population variance. If we were to draw a very large
number of samples, each of size n, from the population of interest and we compute s

2

for each sample, the average sample variance would equal the population variance σ
2
.

Had we have divided by n in the definition of the sample variance (s
2
), the average

sample variance computed from a large number of samples would be less than the
population variance, hence s

2
would tend to underestimate σ

2
. Ideally, the population

variance σ
2
, would be computed as

σ
2
�
<i�xi � µ�2

n (9.7)

but often the entire population is unknown, so we replace the population mean with
its best estimate that is the sample mean, as shown in eqn 9.6. The problem is that
subtracting ȳ from the sum makes the sum as small as it possibly could be. Since the
value of ȳ is centered around the distribution, while µ can be any value. Therefore, the
population variance is likely to be larger than the sample variance because deviations
of sample values from µ are likely to be larger than deviations from ȳ. For this reason,
the sample variance is divided by �n� 1� to allow for larger values of sample variance.
It can be proved mathematically that using �n� 1� allows for an unbiased estimation
of population variance. However, if possible, it is generally more useful to know the
mean and variance of the population rather than that of the sample.

The sample coviariance is a measure of the relationship between two paired datasets:

Covx,y �
1
n

n

=
i�1

�xi � x̄��yi � ȳ� (9.8)

9.6 Coefficient of variation

The coefficient if variation is a adimensional number:
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CV �
σ
x̄ (9.9)

it can also be expressed in percentage:

CV �
σ
x̄ � 100 (9.10)

it is used when all the values of the distribution are positive. It compares the variability
among variables of different nature. For instance, the length and weight of a group
of cats have been measured. The average length is 45 cm and the standard deviation
is 5 cm � CVl � 11%. After weighting them, the mean is 6.5 Kg and the standard
deviation is 1.5 Kg� CVp � 23%. Therefore, with respect to the mean, the weight of
cats is more variable than their length.

9.7 Quantiles

Quantiles are cutting points that divide the range of a probability distribution into
continuous intervals with equal probabilities, or dividing the observations in a sample.

For instance quartiles are the three cut points that divide a dataset into four
equal�sized groups (0�25, 25�50, 50�75 and 75�100%). A decile is a cut point that
divide the distribution in ten intervals.

The precipitation data are ordered in incremental values as shown in the table
below.

Table 9.5

anno inch mm ordinati (mm)
1 1873 80 2032 1 508
2 1874 40 1016 2 533.4
3 1875 65 1651 3 736.6
4 1876 46 1168.4 4 762
5 1877 68 1727.2 5 762
6 1878 32 812.8 6 762
7 1879 58 1473.2 7 787.4
8 1880 60 1524 8 812.8
9 1881 61 1549.4 9 812.8
10 1882 60 1524 10 838.2
. . . . . . . . . . . . . . . . . .
97 1969 43 1092.2 97 1905
98 1970 80 2032 98 1905
99 1971 60 1524 99 1905
100 1972 59 1498.6 100 1955.8
101 1973 41 1041.4 101 2006.6
102 1974 67 1701.8 102 2032
103 1975 83 2108.2 103 2032
104 1976 56 1422.4 104 2032
105 1977 29 736.6 105 2108.2
106 1978 21 533.4 106 2641.6

The ordered data are plotted. The graph depicts the median value, computed as de-

scribed above, the value of the 70
th

observation, and the 5 and 95 % quantiles.
The instruction to order data is shown below using the function sort().
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n-th obs

example obs

NevadaPrec <- read.table("C:/Users/marco.bittelli.PERSONALE/

Documents/Didattica/R_class_3/exercises/descriptive_stat

/data/Nevada_prec.dat",sep = "", check.names = FALSE,

header = TRUE, na.strings = c("NA", "NAN"))

NevadaPrec$Prec_mm = NevadaPrec$Prec * 25.4

NevadaPrec$Year <- as.numeric(NevadaPrec$Year)

str(NevadaPrec)

#sorting data in increasing order

NevadaPrec$Prec_mm_sorted<- sort(NevadaPrec$Prec_mm,

decreasing = FALSE, na.last = NA)

NevadaPrec$Prec_mm_sorted

The quantiles are computed with the instruction below.

#compute quantiles

quantile(NevadaPrec$Prec_mm_sorted,probs = seq(0, 1, 0.05))

0% 5% 10% 15% 20% 25% 30% 35% ...

508.00 768.35 850.90 933.45 1016.00 1022.35 1092.20 1136.65 ...
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9.8 The box plot

The box plot is a useful graph to represent the data. It provides information about the
simmetry of the distribution and incorporates numerical measures of central tendency.
The graph belows show the an histogram by classes (left) and a box plot on the right.
The box plot provided information about the variability of the distribution as well.
The box plot uses the median and hinges of a distribution. Hinges are very similar
to quartiles, but depending on the distribution they may differ very slightly from the
first and third quartiles. The instruction below shows how to plot the box plot of the
precipitation data.

#plot the box plot

boxplot(NevadaPrec$Prec_mm_sorted)

The box plot (also called skeletal box plot) is constructed by drawing a box between
the lower and upper quartiles, with a solid line drawn accross the box to locate the
median. Usually a straight line is drawn to connect the box to the largest value and
another straight line is drawn to connect the box the smallest value.
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9.9 Exercises

1. Download daily precipitation from ARPAE web site Dexter 3. Import the data,
format it to be parsed into dates and run frequency analysis

2. Separate the daily precipitation data in classes. Compute mean and standard
deviation. Plot the cumulative graph and discuss the results.

3. Plot the box plot for the data.
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Inferential statistics

Statistical inference is the process of data analysis to infer properties of an underlying
probability distribution. Inferential statistical analysis infers properties of a popula-
tion, for example by testing hypotheses and deriving estimates.

Descriptive statistics is solely concerned with properties of the observed data, and
it does not rest on the assumption that the data come from a larger population. On
the other hand inferential statistics attempts to derive information about the entire
population from knowledge acquired from samples. A lot can go wrong with statistical
inference, and this is one reason that beginners are so anxious about it.

In his book Statistical Rethinking, R. McElreath (2015) presents a flow chart to
be used as a general guideline when facing a statistical problem. Statistical tools are
so many and so different that it is hard for the beginner to select the appropriate
direction.

One of the most import problems is the tacit belief that the proper objective of
statistical inference is to test null hypotheses. This concept is based on the well�known
theory presented by Karl Popper (1902–1994) who argued that science advances by
falsifying hypotheses. He argued that science works by developing hypotheses that
are, in principle, falsifiable. Many philosophers of science argued that science is not
described by the falsification standard, as Popper recognized and argued. In fact,
deductive falsification is impossible in nearly every scientific context. In this section,
R. McElreath presented two reasons for this impossibility.

a Hypotheses are not models. The relations among hypotheses and different kinds
of models are complex. Many models correspond to the same hypothesis, and
many hypotheses correspond to a single model. This makes strict falsification
impossible.

a Measurement matters. Even when we think the data falsify a model, another ob-
server will debate our methods and measures. They don’t trust the data. Some-
times they are right.

For both of these reasons, deductive falsification never works. The scientific method
cannot be reduced to a statistical procedure, and so our statistical methods should not
pretend to do so. An extended discussion about this topic is presented by R. McElreath,
as an introduction to Bayesian statistics. In general the discussion and the flow chart
presented below is presented to underline the concept that statistical models are indeed
just models. They can be very powerful tools able to unveil important information buy
they can also lead to erroneous results. For these reason, in the process of scientific
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inquire is always of utmost importance to have a clear understanding of the model we
are using and its inherent assumptions.

Fig. 10.1 Example decision tree, or flowchart, for selecting an appropriate statistical proce-

dure. From Statistical Rethinking by R. McElreath (2015).

Following the scheme in Figure 10 the first step is to clearly define the nature
of our data. In many cases the data are quantitative (expressed by numbers) such
as air temperature or cumulative daily precipitation, but in other cases they can be
qualitative therefore identified by name or rank and grouped in number of observations
in each category therefore categorical. For instance a statistics can be performed on the
number of objects produced by a company classified as optimal, acceptable or reject.
Otherwise a transportation study could be classifying the type of transportations used
by citizens such as train, car or bus. A commercial study could be classifying the
quality of a wine based on a test which classify the wine into four categories. When
the data are categorical the two common approach are the Chi�square test or the
Fisher’s exact test, depending on the number of counts.
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For quantitative data the first step is to formulate the correct question. Are we
looking at relationship, for instance how air temperature depends on elevation or at
differences among different measurements. In the case of relationships it is important
to identify the dependent and independent variable. If we are looking at the depen-
dence of air temperature with elevation, clearly the independent variable is elevation
and the dependent variable is air temperature. After having determined the variables,
regression analysis can be performed with linear or non�linear models. If we cannot
clearly identify dependent and independent variables, it is possible to follow a corre-
lation analysis, that can be parametric or non�parametric.

If the experiment is focusing in differences, the type of analysis may follow a dif-
ferent direction. For instance, we are looking at the differences in protein content of
different plants cultivated under different amount of nitrogen fertilization. We prepare
an experiment with different plots and we apply different dose of nitrogen. In this
case we are looking at differences. The differences can be first assessed by quantifying
differences of means or differences of variances. The simplest test for differences among
means is the t�test

10.1 Quantitative data
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10.2 Population and sample

x is a sample of numerosity n: x � �x1, x2, . . . , xn�. Sample is defined as a subset of
the investigated population, where the population can be finite or infinite. Population
is the set of the statistical units of interest. It can also be defined as the set of all
measurements of interest to the sample collector. It could be the number of freshmen
students enrolling at the department of physics, the number of companies in a region,
the total residents of a nation, the concentration of nitrogen in a soil over a given
region, the results of an experiment and so forth. In some cases the population can
be known, for instance the number of students enrolled in the department of physics
at the University of Bologna. In this case, if we want to know the average age of the
students, it is possible to compute it. The 7 mean is a number, just one number. We
do not need to use inferential statistics to know this information, it is sufficient to
use descriptive statistics. On the other hand, in many cases the population cannot be
measured. The reasons can be many. The number of elements are too large, such as the
size of the sand particles in the soils of a given region, the concentration of a pollutant
in the atmosphere, the number of leaves in a forest. In some cases, the experiment
can be performed only on a limited number of sample for financial, practical and time
constrain. For instance during a political pool it is not possible to interview all the
possible voters in an election, therefore only samples are used. In all these cases, the
statistical analysis becomes inferential.

To infer means to deduce or conclude (something) from evidence and reasoning
rather than from explicit statements. Statistical inference is the process of drawing
conclusions about populations or scientific evidence from data. It is the process of
using data analysis to infer properties of an underlying distribution of probability.
Commonly, the inference is performed about a population while having data only on
samples.

It is possible to look at the numbers again, �x1, x2, . . . , xn� as realizations of the
discrete random variables(drv) �X1, X2, . . . , Xn�, in the following way.

A sample of numerosity equal to 10, is extracted from the finite population made
by all the final graduation votes (in 110/110) of the graduated students in Statistical
Science in the year 2007-2008. For instance the series below:

109, 110, 100, 107, 99, 109, 110, 98, 100, 105

Another sample, still of numerosity equal to 10, could be:

100, 108, 96, 110, 98, 104, 110, 99, 100, 102

and so forth. In the example the drv X1 took the value of 109 in the first sample, 110
in the second and so forth. The (drv) X2 took the value of 100 in the first sample, 108
in the second sample, etc.. The same is repeated for the other values that the drv can
take (Xi), in the range 66 to 110.

Given the numerosity of the sample, n, the vector of the drv) is:

X � �X1, X2, . . . , Xn� (10.1)
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which is a multi�variate random variable. All the possible realizations of the set of
drv �X1, X2, . . . , Xn� creates the space of the samples (S). S is the set of all the
samples that can be extracted from the population. It is possible to think at S as a
n-dimensional space where the samples are point in space.

Let us suppose that the drv �X1, X2, . . . , Xn� are independent random variables
and identically distributed (IID)(it may not be always the case), then the sample is
said to be random. The definition said that the drv �X1, X2, . . . , Xn� have the same
distribution, but did not specified which distribution. Indeed, often the distribution
is not known, but it is possible to find a solution with the procedures of statistical
inference.

The hypothesis that the drv �X1, X2, . . . , Xn� are (IID) means that the observed
data or the results of the measurements are not correlated. Obviously this is not always
true and often it is not possible to determine this a priori. Therefore the assumption
is that the correlation are weak enough, such that are not going to significantly affect
the results of the statistical analysis. It is assumed, otherwise, that the sample is
representative, meaning that it will ‘represent’ the entire population, or somehow a
faithful images (hologram).

10.3 Deriving the mean and variance of different random variables

Let’s suppose we have two independent random variables X and Y . As described above
the expected values for these two random variables are:

E�X� � µX (10.2)

and
E�Y � � µY (10.3)

The expected value of a random variable X, denoted E�X� is a generalization of
the weighted average, and is intuitively the arithmetic mean of a large number of
independent realizations of X. The variance is:

Var�X� � E��X � µX�2� � σ
2
X (10.4)

and
Var�Y � � E��Y � µY �2� � σ

2
Y (10.5)

We introduce a third random variable Z defined as Z � X �Y . The expected value is:

E�Z� � E�X � Y � (10.6)

which means that the mean of X plus the mean of Y :

µ�Z� � µX � µY (10.7)

and if we have another r.v. A such that:

E�A� � E�X � Y � (10.8)

which means that the mean of X minus the mean of Y :
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µ�A� � µX � µY (10.9)

So what is the variance of random variable Z and A.

Var�Z� � Var�X� �Var�Y � (10.10)

which is

σ
2
Z � σ

2
X�Y � σ

2
X � σ

2
Y (10.11)

The variance of the r.v. A is exactly the same thing:

Var�A� � Var�X� �Var�Y � (10.12)

σ
2
A � σ

2
X�Y � σ

2
X � σ

2
Y (10.13)

why it is not minus as for the mean ?

σ
2
A � σ

2
X�Y � σ

2
X���Y � � σ

2
X � σ

2
�Y (10.14)

now we will see that the variance of negative �Y is:

σ
2
�Y � Var��Y � � E���Y � E��Y ��2� � E���1�2�Y � E��Y ��2� (10.15)

since E��Y � = �E�Y �, therefore
σ
2
Y � E��Y � E�Y ��2� (10.16)

Therefore the variance of the difference of two independent random variable is equal
to the sum of the variances.

σ
2
A � σ

2
X�Y � σ

2
X � σ

2
Y (10.17)

Indeed, it does not matter if we take the negative or the positive of the variable, since
we are measuring the absolute distance, so it makes sense. So the quantity σ

2
Y and

σ
2
�Y are the same thing. The important aspect of this derivation is that the mean of

differences is the same as the differences of their means:

µX�Y � µX � µY (10.18)

and the variance of differences is the same as the sum of their variances:

σX�Y � σX � σY (10.19)

Now, let us consider two random variable X and Y :

If we consider the difference between there two random variables:
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Fig. 10.2 Sampling process from a population

Z � X̄ � Ȳ (10.20)

where X̄ and Ȳ are now the random variables of the means, we will have

σ
2
X̄�Ȳ � σ

2
X̄ � σ

2
Ȳ �

σ
2
X

n �
σ
2
Y

m (10.21)

a new distribution with larger variance will be obtained since the variances of the two
distribution are obtained:
Therefore the standard deviation is:
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Fig. 10.3 Difference between sampling populations

σX̄�Ȳ �

×
σ2
X

n �
σ2
Y

m (10.22)

it is possible to notice that this equation looks like a distance formula, which will
help to visualize these concepts in a geometrical way. Moreover, these concepts will
be the basis for starting to compare different populations means to identify stastically
significant differences among populations.

10.3.1 Example

In this example, the precipitation at Nevada City are used. The population are the
precipitation at Nevada City from 1873 to 1978. mean: µ � 1337.57 standard deviation:

σ � 391.83

It is better to write as σ � 390 e µ � 1300 e σ � 390 since in the error it is
enough one decimal points. These parameters are referred to the population and they
are called parameters. The computation of these parameters is shown below, where
the data are imported, the values are converted into [mm], and then mean, variance
and standard deviation are computed.

#CODE Ch10_1.R

setwd("~/Didattica/R_class_4/exercises/Ch9_statistical_inference")

Nevada_prec <- read.table("Nevada_prec.dat"

, sep = "", check.names = FALSE, header = T, na.strings = c("NA", "NAN"))

#Convert precipitation from inches to mm

Nevada_prec$Prec_mm = Nevada_prec$Prec * 25.4

Nevada_prec$Prec_mm < numeric()

mu<- mean(Nevada_prec$Prec_mm) #mean
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V<- var(Nevada_prec$Prec_mm) #variance

S<- sd(Nevada_prec$Prec_mm) #standard deviation

The output is

> mu

[1] 1337.574

> V

[1] 153534.4

> S

[1] 391.8347

>

The parameters described above (mean, variance and standard deviation) are
known fixed numbers representing a population, since the entire data set for that
period is known. In many cases the population is unknown and, as described above,
the purpose of inferential statistics is to derive the unknown parameters from a sample.
For instance a sample is:

n � 20 � 1422.4, 1752.6, 762.0, 1854.2, 1143.0, 1371.6, 1041.4, 1320.8, 812.8, 812.8,

914.4, 889.0, 1600.2, 1803.4, 1778.0, 1016.0, 2108.2, 1092.2, 1270.0, 762.0

In this case 1422.4 is the realization of the discrete random variable X1, . . . , 762.0 is
the realization of the discrete random variable X20, where they are all IID. Now the
mean of the population (µ) is estimated through the sample mean, note that as we
described before, the symbol for the mean is now ȳ where the mean for this sample is
ȳ � �1422.4 � 1752.6 �� � 762.0�©20 � 1276.4. The standard deviation (s) can also
be estimated:

s � � 20

=
i�1

�xi � x̄�2©�n � 1��1©2 � 418.9 (10.23)

Now ȳ and s are computed from data from the sample, therefore they are estimated
values, not true values.

As discussed above, the simplest statistical inference problem is point estimation,
where a single value (for instance the mean) from the sample data is used to estimate a
population parameter. In general, define θ as a parameter of the population described
by random variablesX.X is unknown (the distribution is unknown), and θ is unknown.
The quantity θ is called parameter and it is a constant of the population. θ is a measure
of the distribution of one or more character of the population, for instance the mean
µ or the variance σ

2
.

The estimation of the parameter θ is function of the observations of the sample
θ̂ � t�x1, . . . , xn�. When another sample is used, another value is obtained θ̂. Therefore
θ̂ is a realization of the drv Θ � t�X1, . . . , Xn�.

The discrete random variable Θ is called estimator. Since Θ is a random variable, it
has a distribution. This is called the principle of plug-in (substitution). In other words:
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the mean of the population is estimated from the sample mean, the population variance
is obtained from the sample variance and the population standard deviation is obtained
from the sample standard deviation. Note that not always the plug�in principle is a
good choice.
An example is given where a sample with n � 20 is considered:

914.4, 1371.6, 762.0, 1117.6, 1092.2, 1905.0, 1600.2, 1320.8, 1016.0, 1244.6,

1701.8, 1270.0, 1524.0, 889.0, 1625.6, 1117.6, 1066.8, 1143.0, 1752.6, 1473.2

The mean is ȳ � 1295.4 and the standard deviation is s � 315.7. The values of ȳ are
realizations of the estimator sample mean:

X �

n

=
i�1

Xi©n (10.24)

Now Θ � X. In the following figures different distributions made by sample averages
of 5, 20 and 50 (still with n � 20) are depicted. Because of the central limit theorem,

the realizations of X, by increasing the number, they tend to assume the well�known
bell shape, typical of the normal distribution.
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Fig. 10.4

Figure 10.3.1 shows the normal distribution, superimposed over the distribution of
the sample means for the precipitation example. The histogram is normalized (total
area = 1) for comparison against the normal distribution. The total number of sample
means is 100, but the sample size is 25 on the left and 75 on the right.
The numerical results are Left: mean = 1347.4, standard deviation = 63.6 ; Right:
mean = 1335.7, standard deviation = 26.9.

10.4 Confidence Intervals

In the section above the concept of point estimator was provided. However a point esti-
mation is not a reliable assessment of the population without a measure of uncertainty
about the estimation. How close is the estimated mean close to the population mean.
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There are several ways to quantify uncertainty. A common method is the concept of
confidence interval. The confidence interval can be conceptualized as:

x̄ � a Margin of Error (10.25)

where x̄ is the sample mean, which is used as estimator for the population mean µ.
We start from a Normal distribution with mean (µ) and variance (σ

2©n):
N �µ, σ2

n � (10.26)

To properly quantify the error a few assumptions are made: (a) the sample is
randomly selected from the population, (b) the population is normally distributed,
standardizing X̄ by subtracting the mean and divide by the standard deviation:

Z �
�X̄ � µ�
σ©Ón � N �0, 1� (10.27)

where Z is a normalized normal distribution with mean = 0 and variance= 1. X̄ is a
random variable with a normal distribution with mean µ and variance σ. X̄ represents
the many possible means that are obtained by drawing different samples. The third
assumption (c) is that the population standard deviation σ is known. In practice
this is commonly rare since in many cases the population is unknown and therefore
its standard deviation as well, therefore the population standard deviation will be
estimated from samples as well. For now, the assumption is that the population σ is
known.

The general equation for the �1 � α� confidence interval for µ is:

X̄ �
zα
2

σÓ
n

(10.28)

where the term on the right end side is the margin of error. (1 � α) is the confidence
level and it can be 95% or 99%. The 95% is the most common choice. The confidence
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interval is computed by choosing the correct zα value. Figure 10.4 shows the normalized
normal distribution for a confidence interval of 95%. The graph shows the indicated
values of zα©2 (�1.96 in this case), the area (1�α) and the two tails which are α©2.
Each tail is obtained by splitting α evenly in the right and left tails. For any confidence
level, the appropriate zα©2 value must be computed. In R it is possible to compute
the value by typing the qnorm which returns the quantile given a fraction value.

qnorm(0.975)

[1] 1.959964

Since 1-0.025 = 0.975.

rejection region

(a/2)(a/2)

(1-a)

-z(a/2)  z (a/2)

rejection region

Fig. 10.6 Confidence intervals for α � 0.05.

The standard confidence interval α equal to 0.05 (95% confidence interval, 1�α � 0.95)
is:

P ��1.960 & �X̄ � µ�
σ©Ón & 1.960
 � 0.95 (10.29)

multiplying by (σ©Ón) and subtracting X̄ from each term:

P �X̄ � 1.960
σÓ
n
& µ & X̄ � 1.960

σÓ
n

 � 0.95 (10.30)

where X̄ is a random variable and also X̄� � X̄�1.960σ©Ón and X̄� � X̄�1.960σ©Ón
are random variables.

This equation describes that 95% of the values determined by the realizations X̄�

and X̄�, cover the value of µ. If a single sample is observed with mean x̄, which is a
realization of X̄ it can be said that (with 95% confidence), that:

x̄ � 1.960
σÓ
n
& µ & x̄ � 1.960

σÓ
n

(10.31)

the interval �x̄ � 1.960σ©Ón, x̄ � 1.960σ©Ón� is the confidence interval at 95%.

Obviously, the population mean µ is a fixed number, although it may be unknown,
it is not a random variable. Therefore it is wrong to say that the mean of the population
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has a probability of 95% to be within the interval �x̄ � 1.960σ©Ón, x̄ � 1.960σ©Ón�.
The variable that changes is x̄, that varies from sample to sample. It is better to say
that the confidence interval covers the true value of the mean. Indeed, it is better
to use the word coverage interval, meaning that the interval described above has a
probability 95% to cover the unknown value of µ. Therefore it exists a probability
equal to α that the sample comes from a population where the mean is outside of the
interval.

Example: Let us assume to have a sample �9.0, 7.0, 14.0, 13.0, 5.0, 10.4, 6.6, 8.5, 7.5�
collected from a population with normal distribution and known σ � 1. The sample
mean is x̄ � 81©9 � 9. Substituting the values of sample mean (x̄) and variance (σ)
into eq. 10.31, into the confidence interval at 95%, leads to:

9 � 1.960
1Ó
9
& µ & 9 � 1.960

1Ó
9
� �8.35, 9.65� (10.32)

There is 95% confidence that this interval will cover the unknown true mean of the
population. In this case, since the true mean (µ) was 9, the outcome was correct.

In the example below, a sequence of numbers for a sample is created. An estimator
plug-in is computed.

#Code Ch10_2.R

#Confidence Intervals for a random distribution and

#plug-in estimator for a randomly selected sample

# Define sample elements

y <- c(52, 104, 146, 10, 50, 31, 40, 27, 46)

#Confidence intervals (for a normal distribution)

#Variance

sig2p <- function(x) {var(x)}

# Confidence interval 90%

conf.level<-0.90

# Standard Interval

int.stand <- function(x,conf.level) {

theta.hat<-mean(x) # theta.hat = estimated mean

SE <- sqrt(sig2p(x)/length(x)) # plug-in sigma/sqrt(n)

alpha<-1-conf.level

# Density, distribution function,

#quantile function and random generation for the normal

#distribution with mean equal to

#mean and standard deviation equal to sd.

#half on one side and one on the othertheta.hat

#+ c(-z.1malpha*SE,+z.1malpha*SE) #average +- standard error

z.1malpha <- qnorm(1-alpha/2)

}
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#Sample data

theta.hat<-mean(y)

theta.hat

SE <- sqrt(sig2p(y)/length(y))

int.stand(y,conf.level)

plot(function(x) dnorm(x,theta.hat,SE),0,110)

quant<-quantile(y, probs = c(0.025, 0.1587, 0.5, 0.8413, 0.975))

segments(quant[1],0,quant[1],2,lty=2,col="red",lwd=2)

segments(quant[4],0,quant[4],2,lty=2,col="red",lwd=2)

Here the previous example about precipitation in Nevada city is discussed. The
standard deviation σ is unknown and the population from which the sample was col-
lected is not a normal distribution. Nevertheless, it is possible to compute an “approx-
imated level of confidence” based on the convergence toward a normal distribution,
described by the central limit theorem. Moreover, it is possible to estimate σ by using
the sample standard deviation s. Here the sample that was used before is considered
again with n � 20: 1422.4, 1752.6, . . . , 762.0.

The sample mean is x̄ � 1276.4. So the population mean (µ = 1337.57) was esti-
mated using the sample mean x̄, interpreted as a realization of a random variable X̄.
Now, it is of interest to determine the accuracy of the estimation. The standard devia-
tion of the population (σ � 391.83), was estimated from the sample standard deviation
s � 418.9, again a realization of the random variable sample standard deviation.

V ar �X̄� � σ
2©n (10.33)

where σ
2
was replaced by s

2
. The confidence interval at 95% is then:

�1276.4 � 1.960
418.9Ó
20

, 1276.4 � 1.960
418.9Ó
20

� � �1092.76, 1459.94� (10.34)

Note that the size of the interval 2� zα©2 �σ©Ón� is independent from the mean, while
it is function of the standard deviation σ (or from the estimator s), therefore from the
intrinsic variability of the sample, and from the sample size (number n of elements).
In the code below the R code is presented.

The function sample() is used to perform an operation of re-sampling. The idea is
to simulate a collections of samples, without knowing the entire population. Obviously
in this case, we know the total number of cumulative precipitation for each year, so
the population is known. In this exercise we pretend to create a certain number of
collected samples, generated randomly.

The for loop is generating a series of random numbers starting always from the
same seed, therefore the series is always the same. It is useful to employ this method,
such that differences in various statistical experiments are not due to the varia-
tion in the generated random numbers. An important feature of the function sample
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Let us imagine to extract numbers from the bingo, where numbers are in the
interval (1-90). If samples of 25 elements are collected each time, but then I put the
collected numbers back into the box, those numbers could be picked up again. This
method is called with re�introduction. If there are many numbers (maybe 10,000),
the computed mean will not be very different if the reintroduction method is selected.
However, if the number is small (like the example of the bingo), then the reintroduction
method can generate biased means. The selection of this method is possible by using
the instruction replace=FALSE, there is not reintroduction. The overall procedure is
a permutation.

The instruction set.seed(seed) set the seed of R‘s random number generator,
which is useful for creating simulations or random objects that can be reproduced. For
example to create simulated values that are reproducible.

> set.seed(4)

> rnorm(4)

[1] 0.2167549 -0.5424926 0.8911446 0.5959806

> set.seed(4)

> rnorm(4)

[1] 0.2167549 -0.5424926 0.8911446 0.5959806

The results keep being the same every time, otherwise the rnorm function would return
different values each time. The code below employs this function.

setwd("~/Didattica/R_class_4/exercises/Ch9_statistical_inference")

Nevada_prec <- read.table("Nevada_prec.dat"

, sep = "", check.names = FALSE, header = T, na.strings = c("NA", "NAN"))

#Convert precipitation from inches to mm

Nevada_prec$Prec_mm = Nevada_prec$Prec * 25.4

Nevada_prec$Prec_mm < numeric()

mu<- mean(Nevada_prec$Prec_mm) #mean

V<- var(Nevada_prec$Prec_mm) #variance

S<- sd(Nevada_prec$Prec_mm) #standard deviation

xx<-numeric()

mu<-numeric()

sigma<- numeric()

ltot<- 100

for(l in 1:ltot){

#generate the seed to create a random series,

#that is always the same (with the same seed)

set.seed(l+400)

#number of elements for each sample,

#with permutation because replace = FALSE

B<- 25

xx<- sample(Nevada_prec$Prec_mm,B,replace=F)
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mu[l]<- mean(xx)

sigma[l]<- sd(xx)

}

mu

sigma

hist(mu, xlab="mm di pioggia",ylab="freq. norm.",main=" ",

prob=T,plot=T,xlim=c(1150,1550))#,ylim=c(0,0.0065))

#,ylim=c(0,0.018))

m.mu<- mean(mu) #means of the sample means

sd.mu<- sd(mu)

m.mu

sd.mu

#density of the Gaussian function

curve(dnorm(x,m.mu,sd.mu),add=T,lty=5,lwd=2,col="red")

#density of the function

Figure 10.4 shows the distribution (histogram) of randomly selected samples from the
precipitation values at Nevada city, superimposed over a normal distribution.
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10.4.1 Confidence intervals for t-Student distribution

The estimation and test procedures about µ presented earlier in this chapter were based
on the assumption that the population variance was known or that we had enough
observations (samples) to allow the sample standard deviation s to be a reasonable
estimate of the population standard deviation σ. In this section a test is presented to
be used when σ is unknown, no matter the sample size. For example, to determine the
average concentration of a drug into a patient blood stream one hour after the patient
suffering from a rare disease was treated with that drug, may not be possible to obtain
a random sample of 30 or more observations at a given time.

This test was derived by W.S. Gosset who faced the problem of estimating the mean
quality of beer brews, but based on small samples. He thought that using a normal
distribution with small σ would lead to falsely reject the null hypothesis at a slightly
higher rate than that specified by α. He derived the distribution and percentage points
of the test statistic for normal distribution for n $ 30. He published the results under
the pen name Student, because against the company policy to publish his results.

Therefore if σ is unknown, it is not possible to write:

Z � �X̄ � µ�©�σ©Ón� � N �0, 1� (10.35)

but it is possible to write:

Z �
X̄ � µ

S©Ón � tn�1 (10.36)

It means that the statistics of the first member of the equation is distributed like a
random variable for a t Student with n� 1 degrees of freedom. In the equation above,
the rv are �̄X� and S.

With the t Student (19 degrees of freedom), the quantile corresponds to 1�α � 0.95,

which for the normal distribution is zα©2 � 1.960, now it is t
�n�1�

α©2 � 2.093 (n� 1 � 19),
a little larger than 1.960.

The confidence interval is then written as:

�x̄ � t
�n�1�

α©2

sÓ
n
, x̄ � t

�n�1�

α©2

sÓ
n
� (10.37)

In this example is �1080.3, 1472.4�, larger than the one before.

If n - 20 � 30, then t
�n�1�

α©2 � zα©2. It means that the t Student tends to a normal
distribution, with increasing the number of elements in the sample.

It is possible to compute the confidence intervals for the t-student distribution by
using

qt(0.975,10)

[1] 2.228139...

To obtain a value of 1.96 (corresponding to the normal distribution) we must have
above 1000 degree of freedom.
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> qt(0.975,1000)

[1] 1.962339

10.4.2 Terminology

The standard deviation of an estimator is often called standard error, and it is indicated
with se���. For example, for a sample mean of a rv, X̄, the standard error of the mean
se�X̄� is

se�X̄� � Õ
Var� X̄ � � σ©Ón (10.38)

If σ is unknown, standard error is estimated with s©Ón. It meansthat the standard
error is a way to call the ratio:

sample standard deviation

sample size
(10.39)

In the example about precipitation x̄ � 1276.4, the standard error is written se�x̄� �
418.9©Ó20 � 93.67. A common way to refer to the results is to write Un modo frequente
per riferire il risultato della stima intervallare è scrivere x̄ � se�x̄�. In the example:

x̄ � 1276 � 94 (10.40)

The standard error is written with two significant digits se�x̄�. With the previous
terminology the confidence interval is �1182, 1370� with an approximation level of
� 68%.

10.5 Hyphotesis tests

The sample y of numerosity ny � 9, is analyzed with respect to another sample z of
numerosity nz � 7. The two samples are:

ze ��94, 197, 16, 38, 99, 141, 23� nz � 7
y � �52, 104, 146, 10, 50, 31, 40, 27, 46� ny � 9

(10.41)

The hypothesis test is formulated when the question is: are the two sample differ-
ent? or better Are the elements of the sample A larger than the elements of the sample
B ?

Within an experiment framework, performed with different methods, then the ques-
tions formulated above are equivalent to ask: is method x better than method y ?

The data described above are collected from an experiment by Efron et al., where
16 rats were subjected to a treatment with a new drug. Seven rats were the treatment
(they received the drug) while nine rats were the control group (they did not receive
the drug). To explore if the group ze are larger than the group y it is possible to
compare the sample means.

ze � 86.857 and y � 56.222

from which ze � y � 30.635, where d
obs

, is the observed difference. The d
obs

is an
estimate of what is usually called θ̂.
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Now it was observed that the sample means were different. However is this differ-
ence a real difference between the samples, or the difference is due to a random or a
systematic error ? In other words: does the drug work or not ? The problem is well
known and it brings to the concept of hypothesis test. The first step is to formulate
a null hypothesis H0. In our case we assume that the sample ze was extracted from a
population described by the random variable Z, and that the sample y was extracted
from a population described by the random variable Y . The enunciation of the null
hypothesis is:

H0 � Z � Y

which means that the two samples are collected from two populations with features
that have the same distribution. In other words there are no differences. H0 states
that the probabilistic behavior of the sample ze is the same of the sample y, no matter
which sample is collected from the the two populations.

The second step is to build a statistical test. For instance the difference between
the sample means:

D � Z � Y

Note that D is a random variable, which is the difference between the two random
variables Z e Y .

In our case, more realizations of D are observed if H0 is not true, than if H0 is
true. In our case, the more realizations of D occurs, more we assume that H0 is not
true. Obviously to quantify the realizations of D, the probability density of D should
be known or at least we can formulate a conjecture about it. If the distribution of D
is known, then it is possible to compute the probability that the realizations of D are

larger than the observed values of d
obs

.

Then, what is the probability that a realization of D is larger than d
obs

?
To define the probability that the rejection of the null hypothesis is only given by

change we use the “p-value”.
Another example is to test if the income of a family from Bologna is significantly

different from 2000 euros a month. So the null hypothesis is

H0 � µ � 2000

while

H1 � µ j 2000

10.6 Example

Here we are presenting an example where the concept presented in the sections above
is applied.

We are trying to test if two low sugar diet will help overweight people to loose
weight. One group of 100 people are assigned to a low sugar diet, while another group
of 100 people (n � m) are kept on the same diet with lower calories but with the same
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amount of sugar, usually the latter is called the control group. After 3 months the first
group lost (as average) 4.2 kg, while the second group lost 3.3 kg. At a first look it
seems that the first diet was indeed effective in reducing weight. So the mean weight
loss x̄ and standard deviation s̄ were:

Low sugar � x̄ � 4.2 , s̄x � 2.11�kg�
and for the control group:

Control � ȳ � 3.3 , s̄y � 1.83�kg�
at a first superficial look it looks like the low sugar group lost more weight that the
control. If the difference is computed:

x̄ � ȳ � 4.2 � 3.3 � 0.9 �kg�
Now the question is to get a 95 % confidence interval around this number. So, as
explained above, we want to look at the distribution (assuming that it is normal) of
the difference of the means.
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Fig. 10.8 Distribution of the differences of the means.

This is going to have a mean and a standard deviation as shown in Figure 10.6. We
want to make some inferences about this distribution, based on our samples. We want
to define an interval where we know that the true mean will be covered by this interval.
How many standard deviations we need to go to cover this interval ? This is done with
the so called Z table that provides the values for the just one tail. For instance the
0.975 gives a value of z = 1.96, as described above. Or, only 2.5 % of the samples are
going to be more that 1.96 standard deviations away from the mean.
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It can also be written as there are 95 % changes that the value µX̄�Ȳ = 1.91 will
be covered within the distance:

σX̄�Ȳ � 1.96 (10.42)

So the question is how to calculate σX̄�Ȳ � 1.96, therefore to compute the standard
deviation of the distribution. So the standard deviation will be:

σX̄�Ȳ �

×
σ2
X

n �
σ2
Y

m (10.43)

so by replacing the values the computation will be:

σX̄�Ȳ �

Ø
σ2
X̄

100
�

σ2
Ȳ

100
(10.44)

since σX and σY are unknown, we can approximate it with the sample standard
deviations:

sX̄�Ȳ �

Ø
s2
X̄

100
�

s2
Ȳ

100
(10.45)

leading to:

sX̄�Ȳ �

×
2.112

100
�

1.832

100
� 0.27 (10.46)

now the interval can be computed:

0.27 � 1.96 � 0.52 (10.47)

so the confidence interval will be the difference of the means � the value computed
above:
now the interval can be computed:

0.9 � 0.52 � 0.52 (10.48)

now the interval can be computed:

0.38 & CI & 1.42 (10.49)

the expected value of the sample means and the expected values of the population is
the same, therefore this interval gives us an interval that will cover the expected value
of the population.
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